Phylogenetic inference using generative adversarial networks.

IF 4.4 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Megan L Smith, Matthew W Hahn
{"title":"Phylogenetic inference using generative adversarial networks.","authors":"Megan L Smith,&nbsp;Matthew W Hahn","doi":"10.1093/bioinformatics/btad543","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The application of machine learning approaches in phylogenetics has been impeded by the vast model space associated with inference. Supervised machine learning approaches require data from across this space to train models. Because of this, previous approaches have typically been limited to inferring relationships among unrooted quartets of taxa, where there are only three possible topologies. Here, we explore the potential of generative adversarial networks (GANs) to address this limitation. GANs consist of a generator and a discriminator: at each step, the generator aims to create data that is similar to real data, while the discriminator attempts to distinguish generated and real data. By using an evolutionary model as the generator, we use GANs to make evolutionary inferences. Since a new model can be considered at each iteration, heuristic searches of complex model spaces are possible. Thus, GANs offer a potential solution to the challenges of applying machine learning in phylogenetics.</p><p><strong>Results: </strong>We developed phyloGAN, a GAN that infers phylogenetic relationships among species. phyloGAN takes as input a concatenated alignment, or a set of gene alignments, and infers a phylogenetic tree either considering or ignoring gene tree heterogeneity. We explored the performance of phyloGAN for up to 15 taxa in the concatenation case and 6 taxa when considering gene tree heterogeneity. Error rates are relatively low in these simple cases. However, run times are slow and performance metrics suggest issues during training. Future work should explore novel architectures that may result in more stable and efficient GANs for phylogenetics.</p><p><strong>Availability and implementation: </strong>phyloGAN is available on github: https://github.com/meganlsmith/phyloGAN/.</p>","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500083/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad543","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 3

Abstract

Motivation: The application of machine learning approaches in phylogenetics has been impeded by the vast model space associated with inference. Supervised machine learning approaches require data from across this space to train models. Because of this, previous approaches have typically been limited to inferring relationships among unrooted quartets of taxa, where there are only three possible topologies. Here, we explore the potential of generative adversarial networks (GANs) to address this limitation. GANs consist of a generator and a discriminator: at each step, the generator aims to create data that is similar to real data, while the discriminator attempts to distinguish generated and real data. By using an evolutionary model as the generator, we use GANs to make evolutionary inferences. Since a new model can be considered at each iteration, heuristic searches of complex model spaces are possible. Thus, GANs offer a potential solution to the challenges of applying machine learning in phylogenetics.

Results: We developed phyloGAN, a GAN that infers phylogenetic relationships among species. phyloGAN takes as input a concatenated alignment, or a set of gene alignments, and infers a phylogenetic tree either considering or ignoring gene tree heterogeneity. We explored the performance of phyloGAN for up to 15 taxa in the concatenation case and 6 taxa when considering gene tree heterogeneity. Error rates are relatively low in these simple cases. However, run times are slow and performance metrics suggest issues during training. Future work should explore novel architectures that may result in more stable and efficient GANs for phylogenetics.

Availability and implementation: phyloGAN is available on github: https://github.com/meganlsmith/phyloGAN/.

Abstract Image

Abstract Image

Abstract Image

使用生成对抗网络的系统发育推理。
动机:与推理相关的巨大模型空间阻碍了机器学习方法在系统发育中的应用。监督式机器学习方法需要来自整个领域的数据来训练模型。正因为如此,以前的方法通常仅限于推断分类群的无根四分之一之间的关系,其中只有三种可能的拓扑结构。在这里,我们探索生成对抗网络(gan)解决这一限制的潜力。gan由生成器和鉴别器组成:在每一步中,生成器的目标是创建与真实数据相似的数据,而鉴别器则试图区分生成的数据和真实数据。通过使用进化模型作为生成器,我们使用gan进行进化推理。由于每次迭代都可以考虑一个新的模型,因此可以对复杂模型空间进行启发式搜索。因此,gan为在系统发育学中应用机器学习的挑战提供了一个潜在的解决方案。结果:我们开发了phyloGAN,这是一个推断物种之间系统发育关系的GAN。phyloGAN将一个串联的比对或一组基因比对作为输入,并推断出考虑或忽略基因树异质性的系统发育树。在基因树异质性的情况下,我们探索了多达15个分类群和6个分类群的phyloGAN的性能。在这些简单的情况下,错误率相对较低。然而,运行时间很慢,性能指标在训练期间显示出问题。未来的工作应该探索新的架构,可能导致更稳定和高效的系统发育gan。可用性和实现:phyloGAN可在github上获得:https://github.com/meganlsmith/phyloGAN/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinformatics
Bioinformatics 生物-生化研究方法
CiteScore
11.20
自引率
5.20%
发文量
753
审稿时长
2.1 months
期刊介绍: The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信