Reducing cost in DNA-based data storage by sequence analysis-aided soft information decoding of variable-length reads.

IF 4.4 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Seong-Joon Park, Sunghwan Kim, Jaeho Jeong, Albert No, Jong-Seon No, Hosung Park
{"title":"Reducing cost in DNA-based data storage by sequence analysis-aided soft information decoding of variable-length reads.","authors":"Seong-Joon Park, Sunghwan Kim, Jaeho Jeong, Albert No, Jong-Seon No, Hosung Park","doi":"10.1093/bioinformatics/btad548","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>DNA-based data storage is one of the most attractive research areas for future archival storage. However, it faces the problems of high writing and reading costs for practical use. There have been many efforts to resolve this problem, but existing schemes are not fully suitable for DNA-based data storage, and more cost reduction is needed.</p><p><strong>Results: </strong>We propose whole encoding and decoding procedures for DNA storage. The encoding procedure consists of a carefully designed single low-density parity-check code as an inter-oligo code, which corrects errors and dropouts efficiently. We apply new clustering and alignment methods that operate on variable-length reads to aid the decoding performance. We use edit distance and quality scores during the sequence analysis-aided decoding procedure, which can discard abnormal reads and utilize high-quality soft information. We store 548.83 KB of an image file in DNA oligos and achieve a writing cost reduction of 7.46% and a significant reading cost reduction of 26.57% and 19.41% compared with the two previous works.</p><p><strong>Availability and implementation: </strong>Data and codes for all the algorithms proposed in this study are available at: https://github.com/sjpark0905/DNA-LDPC-codes.</p>","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":"39 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500082/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad548","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: DNA-based data storage is one of the most attractive research areas for future archival storage. However, it faces the problems of high writing and reading costs for practical use. There have been many efforts to resolve this problem, but existing schemes are not fully suitable for DNA-based data storage, and more cost reduction is needed.

Results: We propose whole encoding and decoding procedures for DNA storage. The encoding procedure consists of a carefully designed single low-density parity-check code as an inter-oligo code, which corrects errors and dropouts efficiently. We apply new clustering and alignment methods that operate on variable-length reads to aid the decoding performance. We use edit distance and quality scores during the sequence analysis-aided decoding procedure, which can discard abnormal reads and utilize high-quality soft information. We store 548.83 KB of an image file in DNA oligos and achieve a writing cost reduction of 7.46% and a significant reading cost reduction of 26.57% and 19.41% compared with the two previous works.

Availability and implementation: Data and codes for all the algorithms proposed in this study are available at: https://github.com/sjpark0905/DNA-LDPC-codes.

Abstract Image

Abstract Image

序列分析辅助变长读软信息解码降低基于dna的数据存储成本。
动机:基于dna的数据存储是未来档案存储最具吸引力的研究领域之一。然而,它在实际应用中面临着高读写成本的问题。为了解决这个问题已经有很多努力,但是现有的方案并不完全适合基于dna的数据存储,需要进一步降低成本。结果:我们提出了完整的DNA存储编码和解码程序。编码过程由精心设计的单个低密度奇偶校验码作为寡码,有效地纠正错误和遗漏。我们采用新的聚类和对齐方法来操作可变长度读取,以提高解码性能。在序列分析辅助解码过程中,我们使用编辑距离和质量分数,可以丢弃异常读取并利用高质量的软信息。我们将548.83 KB的图像文件存储在DNA oligos中,与之前的两项工作相比,写入成本降低了7.46%,读取成本显著降低了26.57%和19.41%。可用性和实现:本研究中提出的所有算法的数据和代码可在https://github.com/sjpark0905/DNA-LDPC-codes上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinformatics
Bioinformatics 生物-生化研究方法
CiteScore
11.20
自引率
5.20%
发文量
753
审稿时长
2.1 months
期刊介绍: The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信