{"title":"Evaluation of the Effectiveness of Dantrolene Sodium against Digoxininduced Cardiotoxicity in Adult Rats.","authors":"Mahmoud Zardast, Kosar Behmanesh, Tahereh Farkhondeh, Babak Roshanravan, Hamed Aramjoo, Michael Aschner, Saeed Samarghandian, Zahra Kiani","doi":"10.2174/1871525721666230125091826","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Digoxin poisoning commonly occurs in people treated with digoxin. It has been suggested that treatment with dantrolene may be a suitable strategy for digoxin-induced cardiotoxicity.</p><p><strong>Objective: </strong>The aim of this study was to evaluate the protective effect of dantrolene on digoxininduced cardiotoxicity in male rats.</p><p><strong>Methods: </strong>This study was approved by the ethics committee of Birjand University of Medical Sciences (Ethical number: IR.BUMS.REC.1400.067). Forty-two Wistar rats weighing between 300- 350 gr were randomly allocated to 7 groups (n = 6) as follows: Normal Saline (NS) group, Normal Saline + Ethanol (NS + ETOH) group, Normal Saline + dantrolene 10 mg/kg (NS + Dan 10) group, Digoxin (Dig) group), Digoxin + dantrolene 5 mg/kg (Dig + Dan 5) group, Digoxin + dantrolene 10 mg/kg (Dig + Dan 10) group, Digoxin + dantrolene 20 mg/kg (Dig + Dan 20) group, Dig was injected intravenously at 12 mL / h (0.25 mg / mL). Dan (5, 10 and 20 mg/kg) was injected intravenously at 5-8 min/mL. After 1 hour, blood samples were obtained from the animals' cavernous sinus and each animal's heartremoved. The blood sample was rapidly centrifuged at 2,500 rpm for 10 minutes and the serum was separated for measurement of creatine phosphokinase (CPK), potassium (K), sodium (Na), calcium (Ca), and magnesium (Mg). The samples were stored at -20°C. The heart samples were fixed in formalin 10% for histopathological evaluation.</p><p><strong>Results: </strong>K levels slightly increased in the dig group versus the NS group. A significant increase in the K levels was observed in the Dig + Dan 20 group versus the NS group (<i>p</i> < 0.001). Dig slightly decreased Ca levels in the treated group versus the NS group. The levels of Ca significantly increased in the Dig + Dan 10 group versus the Dig group (<i>p</i> < 0.05). Histological examination of the heart tissue in the dig group showed cardiomyocyte degeneration, increased edematous intramuscular space associated with hemorrhage, and congestion. Focal inflammatory cell accumulation in the heart tissue was also seen. Cardiomyocytes were clear and arranged in good order in the Dig + Dan 10 group.</p><p><strong>Conclusion: </strong>dantrolene (10 mg/kg) was cardioprotective in a model of digoxin-induced cardiotoxicity, secondary to cardiac remodeling and hyperkalemia. However, further research is necessary to determine dantrolene's cardioprotective and cardiotoxic doses in animal models.</p>","PeriodicalId":9535,"journal":{"name":"Cardiovascular and Hematological Agents in Medicinal Chemistry","volume":" ","pages":"60-65"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular and Hematological Agents in Medicinal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1871525721666230125091826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Digoxin poisoning commonly occurs in people treated with digoxin. It has been suggested that treatment with dantrolene may be a suitable strategy for digoxin-induced cardiotoxicity.
Objective: The aim of this study was to evaluate the protective effect of dantrolene on digoxininduced cardiotoxicity in male rats.
Methods: This study was approved by the ethics committee of Birjand University of Medical Sciences (Ethical number: IR.BUMS.REC.1400.067). Forty-two Wistar rats weighing between 300- 350 gr were randomly allocated to 7 groups (n = 6) as follows: Normal Saline (NS) group, Normal Saline + Ethanol (NS + ETOH) group, Normal Saline + dantrolene 10 mg/kg (NS + Dan 10) group, Digoxin (Dig) group), Digoxin + dantrolene 5 mg/kg (Dig + Dan 5) group, Digoxin + dantrolene 10 mg/kg (Dig + Dan 10) group, Digoxin + dantrolene 20 mg/kg (Dig + Dan 20) group, Dig was injected intravenously at 12 mL / h (0.25 mg / mL). Dan (5, 10 and 20 mg/kg) was injected intravenously at 5-8 min/mL. After 1 hour, blood samples were obtained from the animals' cavernous sinus and each animal's heartremoved. The blood sample was rapidly centrifuged at 2,500 rpm for 10 minutes and the serum was separated for measurement of creatine phosphokinase (CPK), potassium (K), sodium (Na), calcium (Ca), and magnesium (Mg). The samples were stored at -20°C. The heart samples were fixed in formalin 10% for histopathological evaluation.
Results: K levels slightly increased in the dig group versus the NS group. A significant increase in the K levels was observed in the Dig + Dan 20 group versus the NS group (p < 0.001). Dig slightly decreased Ca levels in the treated group versus the NS group. The levels of Ca significantly increased in the Dig + Dan 10 group versus the Dig group (p < 0.05). Histological examination of the heart tissue in the dig group showed cardiomyocyte degeneration, increased edematous intramuscular space associated with hemorrhage, and congestion. Focal inflammatory cell accumulation in the heart tissue was also seen. Cardiomyocytes were clear and arranged in good order in the Dig + Dan 10 group.
Conclusion: dantrolene (10 mg/kg) was cardioprotective in a model of digoxin-induced cardiotoxicity, secondary to cardiac remodeling and hyperkalemia. However, further research is necessary to determine dantrolene's cardioprotective and cardiotoxic doses in animal models.
期刊介绍:
Cardiovascular & Hematological Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of new Cardiovascular & Hematological Agents. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of current topics in Cardiovascular & Hematological medicinal chemistry. Cardiovascular & Hematological Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cardiovascular & hematological drug discovery.