Alena Hungerford, Hassan W Bakos, Robert John Aitken
{"title":"Sperm cryopreservation: current status and future developments.","authors":"Alena Hungerford, Hassan W Bakos, Robert John Aitken","doi":"10.1071/RD22219","DOIUrl":null,"url":null,"abstract":"<p><p>The cryopreservation of spermatozoa is an important reproductive technology for the preservation of fertility in man and animals. Since the serendipitous discovery of glycerol as an effective cryoprotectant in 1947, sperm cryopreservation has undergone many changes in terms of the freezing methods employed, the rates at which samples are frozen and thawed, and the media used to preserve sperm functionality and DNA integrity. An extensive literature survey has been conducted addressing the cryoprotectants employed for both animal and human semen and the freezing protocols utilised. The results indicate that glycerol remains the dominant cryoprotective agent, usually incorporated into a balanced salt solution containing energy substrates, buffers, osmolytes and protein in the form of human serum albumin (human) or skimmed milk (animal). Realisation that some of the damage observed in cryostored cells involves the generation of reactive oxygen species during the thawing process, has prompted many studies to assess the relative merits of incorporating antioxidants into the cryopreservation media. However, in the absence of systematic comparisons, there is currently no consensus as to which antioxidant combination might be the most effective. Utilising our fundamental understanding of cryodamage to optimise cryopreservation protocols for each species will be important in the future.</p>","PeriodicalId":20932,"journal":{"name":"Reproduction, fertility, and development","volume":"35 3","pages":"265-281"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction, fertility, and development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/RD22219","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
The cryopreservation of spermatozoa is an important reproductive technology for the preservation of fertility in man and animals. Since the serendipitous discovery of glycerol as an effective cryoprotectant in 1947, sperm cryopreservation has undergone many changes in terms of the freezing methods employed, the rates at which samples are frozen and thawed, and the media used to preserve sperm functionality and DNA integrity. An extensive literature survey has been conducted addressing the cryoprotectants employed for both animal and human semen and the freezing protocols utilised. The results indicate that glycerol remains the dominant cryoprotective agent, usually incorporated into a balanced salt solution containing energy substrates, buffers, osmolytes and protein in the form of human serum albumin (human) or skimmed milk (animal). Realisation that some of the damage observed in cryostored cells involves the generation of reactive oxygen species during the thawing process, has prompted many studies to assess the relative merits of incorporating antioxidants into the cryopreservation media. However, in the absence of systematic comparisons, there is currently no consensus as to which antioxidant combination might be the most effective. Utilising our fundamental understanding of cryodamage to optimise cryopreservation protocols for each species will be important in the future.
期刊介绍:
Reproduction, Fertility and Development is an international journal for the publication of original and significant contributions on vertebrate reproductive and developmental biology. Subject areas include, but are not limited to: physiology, biochemistry, cell and molecular biology, endocrinology, genetics and epigenetics, behaviour, immunology and the development of reproductive technologies in humans, livestock and wildlife, and in pest management.
Reproduction, Fertility and Development is a valuable resource for research scientists working in industry or academia on reproductive and developmental biology, clinicians and veterinarians interested in the basic science underlying their disciplines, and students.
Reproduction, Fertility and Development is the official journal of the International Embryo Technology Society and the Society for Reproductive Biology.
Reproduction, Fertility and Development is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.