Quasi-atomic layer etching of Si and nitride hard mask with Cl2 based chemistry

Pub Date : 2021-02-22 DOI:10.1117/12.2583647
Tao Li, S. Schmitz, P. Friddle, Samantha Tan, Wenbing Yang, I. Seshadri
{"title":"Quasi-atomic layer etching of Si and nitride hard mask with Cl2 based chemistry","authors":"Tao Li, S. Schmitz, P. Friddle, Samantha Tan, Wenbing Yang, I. Seshadri","doi":"10.1117/12.2583647","DOIUrl":null,"url":null,"abstract":"The ability to etch silicon highly anistropically at active fin heights of 45nm or greater is critical to fin patterning for continued CMOS scaling. Tight control of fin CD and taper is critical toward controlling the device, with particular importance to channel control. In this study we explore the quasi-atomic layer etch (qALE) parameter space in order to better understand the impact of plasma conditions on fin CD, profile, and aspect ratio dependent etch phenomena. A qALE solution is needed to provide a manufacturable solution for a vertical square bottom fin. In this study a cyclic chlorination (surface modification) + ion bombardment process (modified surface removal) is used to etch Si with a Si3N4 hard mask. Various parameters are explored including bias power, pressure, and time in the ion bombardment step as well as source power, pressure, and time in the chlorination step. With regards to the ion bombardment step, varying time helps to quantify the self-limitation of the etch process, modulating pressure helps to quantify the impact of reduced mean free path and ion density, and modifying source power helps to quantify the impact of changes to ion density. For the chlorination step, varying time helps to quantify the self-limitation of surface modification mechanism, and modifying source power illustrates the impact of Cl radical density on surface modification. These various mechanisms will be explored with the particular view point of how these changes can impact ultimate channel performance.","PeriodicalId":0,"journal":{"name":"","volume":" ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2583647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The ability to etch silicon highly anistropically at active fin heights of 45nm or greater is critical to fin patterning for continued CMOS scaling. Tight control of fin CD and taper is critical toward controlling the device, with particular importance to channel control. In this study we explore the quasi-atomic layer etch (qALE) parameter space in order to better understand the impact of plasma conditions on fin CD, profile, and aspect ratio dependent etch phenomena. A qALE solution is needed to provide a manufacturable solution for a vertical square bottom fin. In this study a cyclic chlorination (surface modification) + ion bombardment process (modified surface removal) is used to etch Si with a Si3N4 hard mask. Various parameters are explored including bias power, pressure, and time in the ion bombardment step as well as source power, pressure, and time in the chlorination step. With regards to the ion bombardment step, varying time helps to quantify the self-limitation of the etch process, modulating pressure helps to quantify the impact of reduced mean free path and ion density, and modifying source power helps to quantify the impact of changes to ion density. For the chlorination step, varying time helps to quantify the self-limitation of surface modification mechanism, and modifying source power illustrates the impact of Cl radical density on surface modification. These various mechanisms will be explored with the particular view point of how these changes can impact ultimate channel performance.
分享
查看原文
基于Cl2化学的Si和氮化物硬掩膜的准原子层蚀刻
在45纳米或更高的有效翅片高度上对硅进行高度各向异性刻蚀的能力对于持续CMOS缩放的翅片图案至关重要。严格控制翅片CD和锥度是控制器件的关键,通道控制尤为重要。在本研究中,我们探索了准原子层蚀刻(qALE)参数空间,以便更好地了解等离子体条件对fin CD,轮廓和纵横比相关蚀刻现象的影响。需要qALE溶液来为垂直方形底鳍提供可制造的溶液。在本研究中,使用循环氯化(表面改性)+离子轰击工艺(改性表面去除)用Si3N4硬掩膜蚀刻Si。探讨了离子轰击步骤中的偏置功率、压力和时间以及氯化步骤中的源功率、压力和时间等参数。对于离子轰击步骤,改变时间有助于量化蚀刻过程的自我限制,调节压力有助于量化平均自由程和离子密度降低的影响,改变源功率有助于量化离子密度变化的影响。在氯化步骤中,改变时间有助于量化表面修饰机制的自限,修饰源功率说明Cl自由基密度对表面修饰的影响。这些不同的机制将以这些变化如何影响最终通道性能的特定观点进行探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信