Predicting Attrition Patterns from Pediatric Weight Management Programs.

Hamed Fayyaz, Thao-Ly T Phan, H Timothy Bunnell, Rahmatollah Beheshti
{"title":"Predicting Attrition Patterns from Pediatric Weight Management Programs.","authors":"Hamed Fayyaz, Thao-Ly T Phan, H Timothy Bunnell, Rahmatollah Beheshti","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is a major public health concern. Multidisciplinary pediatric weight management programs are considered standard treatment for children with obesity who are not able to be successfully managed in the primary care setting. Despite their great potential, high dropout rates (referred to as attrition) are a major hurdle in delivering successful interventions. Predicting attrition patterns can help providers reduce the alarmingly high rates of attrition (up to 80%) by engaging in earlier and more personalized interventions. Previous work has mainly focused on finding static predictors of attrition on smaller datasets and has achieved limited success in effective prediction. In this study, we have collected a five-year comprehensive dataset of 4,550 children from diverse backgrounds receiving treatment at four pediatric weight management programs in the US. We then developed a machine learning pipeline to predict (a) the likelihood of attrition, and (b) the change in body-mass index (BMI) percentile of children, at different time points after joining the weight management program. Our pipeline is greatly customized for this problem using advanced machine learning techniques to process longitudinal data, smaller-size data, and interrelated prediction tasks. The proposed method showed strong prediction performance as measured by AUROC scores (average AUROC of 0.77 for predicting attrition, and 0.78 for predicting weight outcomes).</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"193 ","pages":"326-342"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9854275/pdf/nihms-1865420.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity is a major public health concern. Multidisciplinary pediatric weight management programs are considered standard treatment for children with obesity who are not able to be successfully managed in the primary care setting. Despite their great potential, high dropout rates (referred to as attrition) are a major hurdle in delivering successful interventions. Predicting attrition patterns can help providers reduce the alarmingly high rates of attrition (up to 80%) by engaging in earlier and more personalized interventions. Previous work has mainly focused on finding static predictors of attrition on smaller datasets and has achieved limited success in effective prediction. In this study, we have collected a five-year comprehensive dataset of 4,550 children from diverse backgrounds receiving treatment at four pediatric weight management programs in the US. We then developed a machine learning pipeline to predict (a) the likelihood of attrition, and (b) the change in body-mass index (BMI) percentile of children, at different time points after joining the weight management program. Our pipeline is greatly customized for this problem using advanced machine learning techniques to process longitudinal data, smaller-size data, and interrelated prediction tasks. The proposed method showed strong prediction performance as measured by AUROC scores (average AUROC of 0.77 for predicting attrition, and 0.78 for predicting weight outcomes).

预测儿科体重管理计划的减员模式
肥胖症是一个重大的公共卫生问题。多学科儿科体重管理计划被认为是针对无法在初级保健环境中成功管理的肥胖症儿童的标准治疗方法。尽管其潜力巨大,但高辍学率(简称减员)是成功实施干预的主要障碍。预测流失模式可以帮助医疗服务提供者更早、更个性化地采取干预措施,从而降低惊人的高流失率(高达 80%)。以往的工作主要侧重于在较小的数据集上寻找流失的静态预测因素,在有效预测方面取得的成功有限。在这项研究中,我们收集了一个为期五年的综合数据集,其中包括在美国四个儿科体重管理项目中接受治疗的 4550 名不同背景的儿童。然后,我们开发了一个机器学习管道,用于预测儿童在加入体重管理项目后不同时间点的(a)减员可能性和(b)体重指数(BMI)百分位数的变化。针对这一问题,我们采用先进的机器学习技术,对纵向数据、较小规模的数据以及相互关联的预测任务进行处理,并对管道进行了大幅定制。从 AUROC 分数来看,所提出的方法显示出很强的预测性能(预测减员的平均 AUROC 为 0.77,预测体重结果的平均 AUROC 为 0.78)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信