{"title":"A fast approximation to supershell partition functions","authors":"Brian G. Wilson , Jean-Christophe Pain","doi":"10.1016/j.hedp.2022.101016","DOIUrl":null,"url":null,"abstract":"<div><p>A formula for supershell partition functions, which play a major role in the Super Transition Array approach to radiative-opacity calculations, is derived as a functional of the distribution of energies within the supershell. It consists in an alternative expansion for an arbitrary number of electrons or holes which also allows for quick approximate evaluations with truncated number of terms in the expansion.</p></div>","PeriodicalId":49267,"journal":{"name":"High Energy Density Physics","volume":"45 ","pages":"Article 101016"},"PeriodicalIF":1.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Density Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574181822000398","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 1
Abstract
A formula for supershell partition functions, which play a major role in the Super Transition Array approach to radiative-opacity calculations, is derived as a functional of the distribution of energies within the supershell. It consists in an alternative expansion for an arbitrary number of electrons or holes which also allows for quick approximate evaluations with truncated number of terms in the expansion.
期刊介绍:
High Energy Density Physics is an international journal covering original experimental and related theoretical work studying the physics of matter and radiation under extreme conditions. ''High energy density'' is understood to be an energy density exceeding about 1011 J/m3. The editors and the publisher are committed to provide this fast-growing community with a dedicated high quality channel to distribute their original findings.
Papers suitable for publication in this journal cover topics in both the warm and hot dense matter regimes, such as laboratory studies relevant to non-LTE kinetics at extreme conditions, planetary interiors, astrophysical phenomena, inertial fusion and includes studies of, for example, material properties and both stable and unstable hydrodynamics. Developments in associated theoretical areas, for example the modelling of strongly coupled, partially degenerate and relativistic plasmas, are also covered.