Effect of Extremely Preterm Birth on Adolescent Brain Network Organization.

IF 2.4 3区 医学 Q3 NEUROSCIENCES
Brain connectivity Pub Date : 2023-09-01 Epub Date: 2023-07-24 DOI:10.1089/brain.2022.0077
M Fiona Molloy, Emily J Yu, Whitney I Mattson, Kristen R Hoskinson, H Gerry Taylor, David E Osher, Eric E Nelson, Zeynep M Saygin
{"title":"Effect of Extremely Preterm Birth on Adolescent Brain Network Organization.","authors":"M Fiona Molloy,&nbsp;Emily J Yu,&nbsp;Whitney I Mattson,&nbsp;Kristen R Hoskinson,&nbsp;H Gerry Taylor,&nbsp;David E Osher,&nbsp;Eric E Nelson,&nbsp;Zeynep M Saygin","doi":"10.1089/brain.2022.0077","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Introduction:</i></b> Extremely preterm (EPT) birth, defined as birth at a gestational age (GA) <28 weeks, can have a lasting impact on cognition throughout the life span. Previous investigations reveal differences in brain structure and connectivity between infants born preterm and full-term (FT), but how does preterm birth impact the adolescent connectome? <b><i>Methods:</i></b> In this study, we investigate how EPT birth can alter broadscale network organization later in life by comparing resting-state functional magnetic resonance imaging connectome-based parcellations of the entire cortex in adolescents born EPT (<i>N</i> = 22) to age-matched adolescents born FT (GA ≥37 weeks, <i>N</i> = 28). We compare these parcellations to adult parcellations from previous studies and explore the relationship between an individual's network organization and behavior. <b><i>Results:</i></b> Primary (occipital and sensorimotor) and frontoparietal networks were observed in both groups. However, there existed notable differences in the limbic and insular networks. Surprisingly, the connectivity profile of the limbic network of EPT adolescents was more adultlike than the same network in FT adolescents. Finally, we found a relationship between adolescents' overall cognition score and their limbic network maturity. <b><i>Discussion:</i></b> Overall, preterm birth may contribute to the atypical development of broadscale network organization in adolescence and may partially explain the observed cognitive deficits.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":"13 7","pages":"394-409"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2022.0077","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Introduction: Extremely preterm (EPT) birth, defined as birth at a gestational age (GA) <28 weeks, can have a lasting impact on cognition throughout the life span. Previous investigations reveal differences in brain structure and connectivity between infants born preterm and full-term (FT), but how does preterm birth impact the adolescent connectome? Methods: In this study, we investigate how EPT birth can alter broadscale network organization later in life by comparing resting-state functional magnetic resonance imaging connectome-based parcellations of the entire cortex in adolescents born EPT (N = 22) to age-matched adolescents born FT (GA ≥37 weeks, N = 28). We compare these parcellations to adult parcellations from previous studies and explore the relationship between an individual's network organization and behavior. Results: Primary (occipital and sensorimotor) and frontoparietal networks were observed in both groups. However, there existed notable differences in the limbic and insular networks. Surprisingly, the connectivity profile of the limbic network of EPT adolescents was more adultlike than the same network in FT adolescents. Finally, we found a relationship between adolescents' overall cognition score and their limbic network maturity. Discussion: Overall, preterm birth may contribute to the atypical development of broadscale network organization in adolescence and may partially explain the observed cognitive deficits.

极早产对青少年脑网络组织的影响。
引言:极早产(EPT),定义为胎龄出生(GA)方法:在本研究中,我们通过比较青少年出生的EPT(N = 22)至年龄匹配的FT出生青少年(GA≥37周,N = 28)。我们将这些分组与先前研究中的成人分组进行了比较,并探讨了个人的网络组织和行为之间的关系。结果:两组均观察到初级(枕叶和感觉运动)和额顶神经网络。然而,边缘网络和岛屿网络存在显著差异。令人惊讶的是,EPT青少年边缘网络的连接特征比FT青少年的相同网络更像成年人。最后,我们发现了青少年的整体认知得分与边缘网络成熟度之间的关系。讨论:总体而言,早产可能导致青春期大规模网络组织的非典型发展,并可能部分解释观察到的认知缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain connectivity
Brain connectivity Neuroscience-General Neuroscience
CiteScore
4.80
自引率
0.00%
发文量
80
期刊介绍: Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic. This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信