Accurate diagnostic tissue segmentation and concurrent disease subtyping with small datasets

Q2 Medicine
Steven J. Frank
{"title":"Accurate diagnostic tissue segmentation and concurrent disease subtyping with small datasets","authors":"Steven J. Frank","doi":"10.1016/j.jpi.2022.100174","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>To provide a flexible, end-to-end platform for visually distinguishing diseased from undiseased tissue in a medical image, in particular pathology slides, and classifying diseased regions by subtype. Highly accurate results are obtained using small training datasets and reduced-scale source images that can be easily shared.</p></div><div><h3>Approach</h3><p>An ensemble of lightweight convolutional neural networks (CNNs) is trained on different subsets of images derived from a relatively small number of annotated whole-slide histopathology images (WSIs). The WSIs are first reduced in scale in a manner that preserves anatomic features critical to analysis while also facilitating convenient handling and storage. The segmentation and subtyping tasks are performed sequentially on the reduced-scale images using the same basic workflow: generating and sifting tiles from the image, then classifying each tile with an ensemble of appropriately trained CNNs. For segmentation, the CNN predictions are combined using a function to favor a selected similarity metric, and a mask or map for a a candidate image is produced from tiles whose combined predictions exceed a decision boundary. For subtyping, the resulting mask is applied to the candidate image, and new tiles are derived from the unoccluded regions. These are classified by the subtyping CNNs to produce an overall subtype prediction.</p></div><div><h3>Results and conclusion</h3><p>This approach was applied successfully to two very different datasets of large WSIs, one (PAIP2020) involving multiple subtypes of colorectal cancer and the other (CAMELYON16) single-type breast cancer metastases. Scored using standard similarity metrics, the segmentations outperformed more complex models typifying the state of the art.</p></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"14 ","pages":"Article 100174"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3a/8e/main.PMC9852683.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S215335392200774X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

Abstract

Purpose

To provide a flexible, end-to-end platform for visually distinguishing diseased from undiseased tissue in a medical image, in particular pathology slides, and classifying diseased regions by subtype. Highly accurate results are obtained using small training datasets and reduced-scale source images that can be easily shared.

Approach

An ensemble of lightweight convolutional neural networks (CNNs) is trained on different subsets of images derived from a relatively small number of annotated whole-slide histopathology images (WSIs). The WSIs are first reduced in scale in a manner that preserves anatomic features critical to analysis while also facilitating convenient handling and storage. The segmentation and subtyping tasks are performed sequentially on the reduced-scale images using the same basic workflow: generating and sifting tiles from the image, then classifying each tile with an ensemble of appropriately trained CNNs. For segmentation, the CNN predictions are combined using a function to favor a selected similarity metric, and a mask or map for a a candidate image is produced from tiles whose combined predictions exceed a decision boundary. For subtyping, the resulting mask is applied to the candidate image, and new tiles are derived from the unoccluded regions. These are classified by the subtyping CNNs to produce an overall subtype prediction.

Results and conclusion

This approach was applied successfully to two very different datasets of large WSIs, one (PAIP2020) involving multiple subtypes of colorectal cancer and the other (CAMELYON16) single-type breast cancer metastases. Scored using standard similarity metrics, the segmentations outperformed more complex models typifying the state of the art.

Abstract Image

Abstract Image

Abstract Image

用小数据集准确诊断组织分割和并发疾病亚型
目的提供一个灵活的端到端平台,用于在医学图像(特别是病理切片)中视觉区分病变组织和未病变组织,并按亚型对病变区域进行分类。使用易于共享的小型训练数据集和缩减规模的源图像可以获得高精度的结果。方法轻量级卷积神经网络(cnn)的集合在来自相对少量注释的全切片组织病理学图像(wsi)的不同图像子集上进行训练。wsi首先以一种保留对分析至关重要的解剖特征的方式缩小规模,同时也便于处理和存储。使用相同的基本工作流程,在降尺度图像上依次执行分割和子类型任务:从图像中生成和筛选图像块,然后使用经过适当训练的cnn集合对每个图像块进行分类。对于分割,CNN预测使用一个函数组合以支持选定的相似性度量,并且从组合预测超过决策边界的块中生成候选图像的掩码或地图。对于子类型,将结果掩码应用于候选图像,并从未包含的区域派生出新的贴片。这些被分型cnn分类,以产生一个整体的分型预测。结果和结论该方法成功应用于两个非常不同的大型wsi数据集,一个(PAIP2020)涉及结直肠癌的多个亚型,另一个(CAMELYON16)涉及单一类型的乳腺癌转移。使用标准的相似性度量评分,分割优于更复杂的模型代表的艺术状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Pathology Informatics
Journal of Pathology Informatics Medicine-Pathology and Forensic Medicine
CiteScore
3.70
自引率
0.00%
发文量
2
审稿时长
18 weeks
期刊介绍: The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信