Heegaard Floer homology for manifolds with torus boundary: properties and examples.

IF 1.5 1区 数学 Q1 MATHEMATICS
Jonathan Hanselman, Jacob Rasmussen, Liam Watson
{"title":"Heegaard Floer homology for manifolds with torus boundary: properties and examples.","authors":"Jonathan Hanselman,&nbsp;Jacob Rasmussen,&nbsp;Liam Watson","doi":"10.1112/plms.12473","DOIUrl":null,"url":null,"abstract":"<p><p>This is a companion paper to earlier work of the authors (Preprint, arXiv:1604.03466, 2016), which interprets the Heegaard Floer homology for a manifold with torus boundary in terms of immersed curves in a punctured torus. We establish a variety of properties of this invariant, paying particular attention to its relation to knot Floer homology, the Thurston norm, and the Turaev torsion. We also give a geometric description of the gradings package from bordered Heegaard Floer homology and establish a symmetry under <math> <mrow><msup><mo>Spin</mo> <mi>c</mi></msup> </mrow> </math> conjugation; this symmetry gives rise to genus one mutation invariance in Heegaard Floer homology for closed three-manifolds. Finally, we include more speculative discussions on relationships with Seiberg-Witten theory, Khovanov homology, and <math> <mrow><msup><mi>HF</mi> <mo>±</mo></msup> </mrow> </math> . Many examples are included.</p>","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"125 4","pages":"879-967"},"PeriodicalIF":1.5000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826536/pdf/","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12473","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 32

Abstract

This is a companion paper to earlier work of the authors (Preprint, arXiv:1604.03466, 2016), which interprets the Heegaard Floer homology for a manifold with torus boundary in terms of immersed curves in a punctured torus. We establish a variety of properties of this invariant, paying particular attention to its relation to knot Floer homology, the Thurston norm, and the Turaev torsion. We also give a geometric description of the gradings package from bordered Heegaard Floer homology and establish a symmetry under Spin c conjugation; this symmetry gives rise to genus one mutation invariance in Heegaard Floer homology for closed three-manifolds. Finally, we include more speculative discussions on relationships with Seiberg-Witten theory, Khovanov homology, and HF ± . Many examples are included.

Abstract Image

Abstract Image

Abstract Image

具有环面边界流形的守恒花同调:性质和例子。
这是作者早期工作的配套论文(预印本,arXiv:1604.03466, 2016),该论文解释了环面边界流形的Heegaard flower同源性,即在穿孔环面中浸入曲线。我们建立了这个不变量的各种性质,特别注意了它与结花同调、Thurston范数和Turaev扭转的关系。给出了有边Heegaard花同调的分级包的几何描述,并建立了自旋c共轭下的对称;这种对称性在闭三流形的Heegaard花同源中引起了属1突变不变性。最后,我们对Seiberg-Witten理论、Khovanov同调和HF±的关系进行了更多的推测性讨论。其中包括许多例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信