{"title":"Enhanced dataset synthesis using conditional generative adversarial networks.","authors":"Ahmet Mert","doi":"10.1007/s13534-022-00251-x","DOIUrl":null,"url":null,"abstract":"<p><p>Biomedical data acquisition, and reaching sufficient samples of participants are difficult and time ans effort consuming processes. On the other hand, the success rates of computer aided diagnosis (CAD) algorithms are sample and feature space depended. In this paper, conditional generative adversarial network (CGAN) based enhanced feature generation is proposed to synthesize large sample datasets having higher class separability. Twenty five percent of five medical datasets are used to train CGAN, and the synthetic datasets with any sample size are evaluated and compared to originals. Thus, new datasets can be generated with the help of the CGAN model and lower sample collection. It helps physicians decreasing sample collection processes, and it increases accuracy rates of the CAD systems using generated enhanced data with enhanced feature vectors. The synthesized datasets are classified using nearest neighbor, radial basis function support vector machine and artificial neural network to analyze the effectiveness of the proposed CGAN model.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"13 1","pages":"41-48"},"PeriodicalIF":3.2000,"publicationDate":"2022-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873883/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-022-00251-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Biomedical data acquisition, and reaching sufficient samples of participants are difficult and time ans effort consuming processes. On the other hand, the success rates of computer aided diagnosis (CAD) algorithms are sample and feature space depended. In this paper, conditional generative adversarial network (CGAN) based enhanced feature generation is proposed to synthesize large sample datasets having higher class separability. Twenty five percent of five medical datasets are used to train CGAN, and the synthetic datasets with any sample size are evaluated and compared to originals. Thus, new datasets can be generated with the help of the CGAN model and lower sample collection. It helps physicians decreasing sample collection processes, and it increases accuracy rates of the CAD systems using generated enhanced data with enhanced feature vectors. The synthesized datasets are classified using nearest neighbor, radial basis function support vector machine and artificial neural network to analyze the effectiveness of the proposed CGAN model.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.