Clustering-enhanced stock price prediction using deep learning.

IF 2.7 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Man Li, Ye Zhu, Yuxin Shen, Maia Angelova
{"title":"Clustering-enhanced stock price prediction using deep learning.","authors":"Man Li,&nbsp;Ye Zhu,&nbsp;Yuxin Shen,&nbsp;Maia Angelova","doi":"10.1007/s11280-021-01003-0","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, artificial intelligence technologies have been successfully applied in time series prediction and analytic tasks. At the same time, a lot of attention has been paid to financial time series prediction, which targets the development of novel deep learning models or optimize the forecasting results. To optimize the accuracy of stock price prediction, in this paper, we propose a clustering-enhanced deep learning framework to predict stock prices with three matured deep learning forecasting models, such as Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN) and Gated Recurrent Unit (GRU). The proposed framework considers the clustering as the forecasting pre-processing, which can improve the quality of the training models. To achieve the effective clustering, we propose a new similarity measure, called Logistic Weighted Dynamic Time Warping (LWDTW), by extending a Weighted Dynamic Time Warping (WDTW) method to capture the relative importance of return observations when calculating distance matrices. Especially, based on the empirical distributions of stock returns, the cost weight function of WDTW is modified with logistic probability density distribution function. In addition, we further implement the clustering-based forecasting framework with the above three deep learning models. Finally, extensive experiments on daily US stock price data sets show that our framework has achieved excellent forecasting performance with overall best results for the combination of Logistic WDTW clustering and LSTM model using 5 different evaluation metrics.</p>","PeriodicalId":49356,"journal":{"name":"World Wide Web-Internet and Web Information Systems","volume":"26 1","pages":"207-232"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009501/pdf/","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web-Internet and Web Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11280-021-01003-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 6

Abstract

In recent years, artificial intelligence technologies have been successfully applied in time series prediction and analytic tasks. At the same time, a lot of attention has been paid to financial time series prediction, which targets the development of novel deep learning models or optimize the forecasting results. To optimize the accuracy of stock price prediction, in this paper, we propose a clustering-enhanced deep learning framework to predict stock prices with three matured deep learning forecasting models, such as Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN) and Gated Recurrent Unit (GRU). The proposed framework considers the clustering as the forecasting pre-processing, which can improve the quality of the training models. To achieve the effective clustering, we propose a new similarity measure, called Logistic Weighted Dynamic Time Warping (LWDTW), by extending a Weighted Dynamic Time Warping (WDTW) method to capture the relative importance of return observations when calculating distance matrices. Especially, based on the empirical distributions of stock returns, the cost weight function of WDTW is modified with logistic probability density distribution function. In addition, we further implement the clustering-based forecasting framework with the above three deep learning models. Finally, extensive experiments on daily US stock price data sets show that our framework has achieved excellent forecasting performance with overall best results for the combination of Logistic WDTW clustering and LSTM model using 5 different evaluation metrics.

Abstract Image

Abstract Image

Abstract Image

基于深度学习的聚类增强股价预测。
近年来,人工智能技术已成功地应用于时间序列预测和分析任务中。与此同时,金融时间序列预测也受到了很多关注,其目标是开发新的深度学习模型或优化预测结果。为了优化股票价格预测的准确性,本文提出了一个聚类增强的深度学习框架,利用长短期记忆(LSTM)、循环神经网络(RNN)和门控循环单元(GRU)三种成熟的深度学习预测模型来预测股票价格。该框架将聚类作为预测预处理,可以提高训练模型的质量。为了实现有效的聚类,我们提出了一种新的相似性度量,称为Logistic加权动态时间扭曲(LWDTW),通过扩展加权动态时间扭曲(WDTW)方法来捕获返回观测值在计算距离矩阵时的相对重要性。特别地,基于股票收益的经验分布,用logistic概率密度分布函数对WDTW的成本权重函数进行了修正。此外,我们利用上述三个深度学习模型进一步实现了基于聚类的预测框架。最后,在美国每日股票价格数据集上进行的大量实验表明,我们的框架取得了出色的预测性能,使用5种不同的评估指标将Logistic WDTW聚类和LSTM模型相结合,总体效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
World Wide Web-Internet and Web Information Systems
World Wide Web-Internet and Web Information Systems 工程技术-计算机:软件工程
CiteScore
7.30
自引率
10.80%
发文量
131
审稿时长
6 months
期刊介绍: World Wide Web: Internet and Web Information Systems (WWW) is an international, archival, peer-reviewed journal which covers all aspects of the World Wide Web, including issues related to architectures, applications, Internet and Web information systems, and communities. The purpose of this journal is to provide an international forum for researchers, professionals, and industrial practitioners to share their rapidly developing knowledge and report on new advances in Internet and web-based systems. The journal also focuses on all database- and information-system topics that relate to the Internet and the Web, particularly on ways to model, design, develop, integrate, and manage these systems. Appearing quarterly, the journal publishes (1) papers describing original ideas and new results, (2) vision papers, (3) reviews of important techniques in related areas, (4) innovative application papers, and (5) progress reports on major international research projects. Papers published in the WWW journal deal with subjects directly or indirectly related to the World Wide Web. The WWW journal provides timely, in-depth coverage of the most recent developments in the World Wide Web discipline to enable anyone involved to keep up-to-date with this dynamically changing technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信