{"title":"Suppression of Krüppel-like factor 5 basal expression by CREB1 binding to far distal element.","authors":"Nozomi Mihara, Kazushi Imai","doi":"10.3233/TUB-230017","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Krüppel-like factor 5 (KLF5) is a transcription factor regulating the proliferation and differentiation of epithelial cells, and its uncontrolled expression is closely associated with carcinoma progression. Sp3 binding to the minimal essential region (MER) of KLF5 gene is critical for KLF5 basal expression, but the expression control mechanism is unknown.</p><p><strong>Objective: </strong>This study aimed to identify a regulatory region for KLF5 basal expression and the binding protein in carcinoma cells by analyzing the promoter upstream region.</p><p><strong>Methods: </strong>Reporter assays determined the silencer region. The protein binding to the region was identified by database analysis and ChIP assay. The protein mediating the interaction between the region and the MER was confirmed through chromosome conformation capture (3 C) on ChIP assay. The effects of the protein on KLF5 expression were analyzed using qRT-PCR and western blot.</p><p><strong>Results: </strong>Reporter assay localized the 425-region from upstream KLF5 gene as the silencer. Database analysis and ChIP assay found CREB1 binding to the 425-region. CREB1 siRNA or mutation of CREB1-binding site in the 425-region increased luciferase activities and decreased the binding to 425-region. 3 C on ChIP assay showed that CREB1 mediated interaction of the 425-region and the MER. CREB1 overexpression decreased endogenous KLF5 expression and luciferase activity.</p><p><strong>Conclusions: </strong>The 425-region is the silencer of KLF5 basal expression, and CREB1 binding suppresses the expression.</p>","PeriodicalId":23364,"journal":{"name":"Tumor Biology","volume":"45 1","pages":"81-94"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tumor Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/TUB-230017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Krüppel-like factor 5 (KLF5) is a transcription factor regulating the proliferation and differentiation of epithelial cells, and its uncontrolled expression is closely associated with carcinoma progression. Sp3 binding to the minimal essential region (MER) of KLF5 gene is critical for KLF5 basal expression, but the expression control mechanism is unknown.
Objective: This study aimed to identify a regulatory region for KLF5 basal expression and the binding protein in carcinoma cells by analyzing the promoter upstream region.
Methods: Reporter assays determined the silencer region. The protein binding to the region was identified by database analysis and ChIP assay. The protein mediating the interaction between the region and the MER was confirmed through chromosome conformation capture (3 C) on ChIP assay. The effects of the protein on KLF5 expression were analyzed using qRT-PCR and western blot.
Results: Reporter assay localized the 425-region from upstream KLF5 gene as the silencer. Database analysis and ChIP assay found CREB1 binding to the 425-region. CREB1 siRNA or mutation of CREB1-binding site in the 425-region increased luciferase activities and decreased the binding to 425-region. 3 C on ChIP assay showed that CREB1 mediated interaction of the 425-region and the MER. CREB1 overexpression decreased endogenous KLF5 expression and luciferase activity.
Conclusions: The 425-region is the silencer of KLF5 basal expression, and CREB1 binding suppresses the expression.
期刊介绍:
Tumor Biology is a peer reviewed, international journal providing an open access forum for experimental and clinical cancer research. Tumor Biology covers all aspects of tumor markers, molecular biomarkers, tumor targeting, and mechanisms of tumor development and progression.
Specific topics of interest include, but are not limited to:
Pathway analyses,
Non-coding RNAs,
Circulating tumor cells,
Liquid biopsies,
Exosomes,
Epigenetics,
Cancer stem cells,
Tumor immunology and immunotherapy,
Tumor microenvironment,
Targeted therapies,
Therapy resistance
Cancer genetics,
Cancer risk screening.
Studies in other areas of basic, clinical and translational cancer research are also considered in order to promote connections and discoveries across different disciplines.
The journal publishes original articles, reviews, commentaries and guidelines on tumor marker use. All submissions are subject to rigorous peer review and are selected on the basis of whether the research is sound and deserves publication.
Tumor Biology is the Official Journal of the International Society of Oncology and BioMarkers (ISOBM).