Transposable Element Populations Shed Light on the Evolutionary History of Wheat and the Complex Co-Evolution of Autonomous and Non-Autonomous Retrotransposons

Thomas Wicker, Christoph Stritt, Alexandros G. Sotiropoulos, Manuel Poretti, Curtis Pozniak, Sean Walkowiak, Heidrun Gundlach, Nils Stein
{"title":"Transposable Element Populations Shed Light on the Evolutionary History of Wheat and the Complex Co-Evolution of Autonomous and Non-Autonomous Retrotransposons","authors":"Thomas Wicker, Christoph Stritt, Alexandros G. Sotiropoulos, Manuel Poretti, Curtis Pozniak, Sean Walkowiak, Heidrun Gundlach, Nils Stein","doi":"10.1002/ggn2.202100022","DOIUrl":null,"url":null,"abstract":"Wheat has one of the largest and most repetitive genomes among major crop plants, containing over 85% transposable elements (TEs). TEs populate genomes much in the way that individuals populate ecosystems, diversifying into different lineages, sub‐families and sub‐populations. The recent availability of high‐quality, chromosome‐scale genome sequences from ten wheat lines enables a detailed analysis how TEs evolved in allohexaploid wheat, its diploids progenitors, and in various chromosomal haplotype segments. LTR retrotransposon families evolved into distinct sub‐populations and sub‐families that were active in waves lasting several hundred thousand years. Furthermore, It is shown that different retrotransposon sub‐families were active in the three wheat sub‐genomes, making them useful markers to study and date polyploidization events and chromosomal rearrangements. Additionally, haplotype‐specific TE sub‐families are used to characterize chromosomal introgressions in different wheat lines. Additionally, populations of non‐autonomous TEs co‐evolved over millions of years with their autonomous partners, leading to complex systems with multiple types of autonomous, semi‐autonomous and non‐autonomous elements. Phylogenetic and TE population analyses revealed the relationships between non‐autonomous elements and their mobilizing autonomous partners. TE population analysis provided insights into genome evolution of allohexaploid wheat and genetic diversity of species, and may have implication for future crop breeding.","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744471/pdf/","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced genetics (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ggn2.202100022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Wheat has one of the largest and most repetitive genomes among major crop plants, containing over 85% transposable elements (TEs). TEs populate genomes much in the way that individuals populate ecosystems, diversifying into different lineages, sub‐families and sub‐populations. The recent availability of high‐quality, chromosome‐scale genome sequences from ten wheat lines enables a detailed analysis how TEs evolved in allohexaploid wheat, its diploids progenitors, and in various chromosomal haplotype segments. LTR retrotransposon families evolved into distinct sub‐populations and sub‐families that were active in waves lasting several hundred thousand years. Furthermore, It is shown that different retrotransposon sub‐families were active in the three wheat sub‐genomes, making them useful markers to study and date polyploidization events and chromosomal rearrangements. Additionally, haplotype‐specific TE sub‐families are used to characterize chromosomal introgressions in different wheat lines. Additionally, populations of non‐autonomous TEs co‐evolved over millions of years with their autonomous partners, leading to complex systems with multiple types of autonomous, semi‐autonomous and non‐autonomous elements. Phylogenetic and TE population analyses revealed the relationships between non‐autonomous elements and their mobilizing autonomous partners. TE population analysis provided insights into genome evolution of allohexaploid wheat and genetic diversity of species, and may have implication for future crop breeding.

Abstract Image

转座因子群体揭示了小麦的进化史以及自主和非自主反转录转座子的复杂共同进化
小麦是主要作物中最大、重复最多的基因组之一,含有超过85%的转座因子(te)。te填充基因组的方式与个体填充生态系统的方式非常相似,它们分化成不同的谱系、亚家族和亚种群。最近,来自10个小麦品系的高质量、染色体尺度的基因组序列使我们能够详细分析te是如何在异源六倍体小麦、其二倍体祖先和各种染色体单倍型片段中进化的。LTR反转录转座子家族进化成不同的亚种群和亚家族,这些亚家族在持续几十万年的波浪中活跃。此外,研究还表明,三个小麦亚基因组中存在不同的反转录转座子亚家族,这使得它们成为研究和确定多倍体事件和染色体重排的有用标记。此外,单倍型特异性TE亚家族被用来表征不同小麦品系的染色体渗入。此外,非自治te群体与它们的自治伙伴共同进化了数百万年,形成了具有多种类型的自治、半自治和非自治元素的复杂系统。系统发育和TE种群分析揭示了非自治元素与其动员自治伙伴之间的关系。TE群体分析为小麦异源六倍体基因组进化和物种遗传多样性的研究提供了新的思路,并对未来的作物育种具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信