Firstly electrochemical investigetions and determination of anticoagulant drug edoxaban at single-use pencil graphite electrode: an eco-friendly and cost effective voltammetric method.
Abdulkadir Kiliç, Mehmet Aslan, Günay Önal, Abdulkadir Levent
{"title":"Firstly electrochemical investigetions and determination of anticoagulant drug edoxaban at single-use pencil graphite electrode: an eco-friendly and cost effective voltammetric method.","authors":"Abdulkadir Kiliç, Mehmet Aslan, Günay Önal, Abdulkadir Levent","doi":"10.1007/s40199-023-00478-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The anticoagulant drug edoxaban has a blood thinning mechanism of action. In this study, a pencil graphite electrode was electrochemically activated at + 1.4 V for 60 s. in a Britton-Robinson (pH 9.0) supporting electrolyte solution.</p><p><strong>Evidence acquisition: </strong>A simple, fast, and sensitive electrochemical procedure was developed using cyclic voltammetry and square wave voltammetry techniques. It was observed that edoxaban gave a good oxidation signal with cyclic voltammetry technique at a potential of + 0.98 V (vs. Ag/AgCl).</p><p><strong>Results: </strong>This procedure showed a linear response in a Britton-Robinson (pH 9.0) media within the concentration range of 0.2-1.8 µM and limit of detection (LOD) and the limit of quantification (LOQ) values were determined to be 0.073 μM (0.133 μg mL<sup>-1</sup>) and 0.243 μM (0.443 μg mL<sup>-1</sup>), respectively.</p><p><strong>Conclusion: </strong>The method developed in this study was successfully applied to drug and urine samples. The developed voltammetric method was highly selective and gave satisfactory recovery results in urine and pharmaceutical samples. The results of the voltammetric method were compared with the spectroscopic method and it was determined that the results were compatible.</p>","PeriodicalId":10961,"journal":{"name":"Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences","volume":" ","pages":"233-241"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624777/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40199-023-00478-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The anticoagulant drug edoxaban has a blood thinning mechanism of action. In this study, a pencil graphite electrode was electrochemically activated at + 1.4 V for 60 s. in a Britton-Robinson (pH 9.0) supporting electrolyte solution.
Evidence acquisition: A simple, fast, and sensitive electrochemical procedure was developed using cyclic voltammetry and square wave voltammetry techniques. It was observed that edoxaban gave a good oxidation signal with cyclic voltammetry technique at a potential of + 0.98 V (vs. Ag/AgCl).
Results: This procedure showed a linear response in a Britton-Robinson (pH 9.0) media within the concentration range of 0.2-1.8 µM and limit of detection (LOD) and the limit of quantification (LOQ) values were determined to be 0.073 μM (0.133 μg mL-1) and 0.243 μM (0.443 μg mL-1), respectively.
Conclusion: The method developed in this study was successfully applied to drug and urine samples. The developed voltammetric method was highly selective and gave satisfactory recovery results in urine and pharmaceutical samples. The results of the voltammetric method were compared with the spectroscopic method and it was determined that the results were compatible.