{"title":"PAQR3 facilitates the ferroptosis of diffuse large B-cell lymphoma via the regulation of LDLR-mediated PI3K/AKT pathway","authors":"Xiangxiang Song, Weiming Zhang, Nasha Yu, Xing Zhong","doi":"10.1002/hon.3219","DOIUrl":null,"url":null,"abstract":"<p>Progesterone and adiponectin receptor 3 (PAQR3) has been found to regulate tumor progression by mediating cell ferroptosis. However, whether PAQR3 mediates ferroptosis in diffuse large B-cell lymphoma (DLBCL) needs further investigation. The mRNA and protein levels of PAQR3 and low-density lipoprotein receptor (LDLR) were assessed by qRT-PCR and WB assays. Cell proliferation was detected by MTT assay and EdU assay. Shrunken mitochondria was counted under transmission electron microscope. Cell ferroptosis was evaluated by measuring the levels of malondialdehyde, reactive oxygen species, glutathione, Fe<sup>2+</sup>, and the protein expression of ferroptosis-related markers. PAQR3 and LDLR interaction was confirmed by RIP assay and pull-down assay. Our study showed that PAQR3 was underexpressed, while LDLR was overexpressed in DLBCL tissues and cells. Functionally, PAQR3 overexpression or LDLR knockdown restrained DLBCL cell proliferation and enhanced ferroptosis. Mechanistically, PAQR3 reduced LDLR expression by inhibiting its mRNA stability. Meanwhile, LDLR overexpression reversed PAQR3-mediated the promoting on DLBCL cell ferroptosis, and LY294002 (PI3K/AKT inhibitor) eliminated the inhibiting effects of LDLR overexpression on DLBCL cell ferroptosis. Additionally, excessive PAQR3 reduced DLBCL tumor growth by enhancing tumor cell ferroptosis through LDLR-mediated PI3K/AKT pathway. In conclusion, our data suggested that PAQR3 restrained DLBCL progression by aggravating ferroptosis, which was achieved by inhibiting LDLR expression to repress PI3K/AKT pathway.</p>","PeriodicalId":12882,"journal":{"name":"Hematological Oncology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hematological Oncology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hon.3219","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Progesterone and adiponectin receptor 3 (PAQR3) has been found to regulate tumor progression by mediating cell ferroptosis. However, whether PAQR3 mediates ferroptosis in diffuse large B-cell lymphoma (DLBCL) needs further investigation. The mRNA and protein levels of PAQR3 and low-density lipoprotein receptor (LDLR) were assessed by qRT-PCR and WB assays. Cell proliferation was detected by MTT assay and EdU assay. Shrunken mitochondria was counted under transmission electron microscope. Cell ferroptosis was evaluated by measuring the levels of malondialdehyde, reactive oxygen species, glutathione, Fe2+, and the protein expression of ferroptosis-related markers. PAQR3 and LDLR interaction was confirmed by RIP assay and pull-down assay. Our study showed that PAQR3 was underexpressed, while LDLR was overexpressed in DLBCL tissues and cells. Functionally, PAQR3 overexpression or LDLR knockdown restrained DLBCL cell proliferation and enhanced ferroptosis. Mechanistically, PAQR3 reduced LDLR expression by inhibiting its mRNA stability. Meanwhile, LDLR overexpression reversed PAQR3-mediated the promoting on DLBCL cell ferroptosis, and LY294002 (PI3K/AKT inhibitor) eliminated the inhibiting effects of LDLR overexpression on DLBCL cell ferroptosis. Additionally, excessive PAQR3 reduced DLBCL tumor growth by enhancing tumor cell ferroptosis through LDLR-mediated PI3K/AKT pathway. In conclusion, our data suggested that PAQR3 restrained DLBCL progression by aggravating ferroptosis, which was achieved by inhibiting LDLR expression to repress PI3K/AKT pathway.
期刊介绍:
Hematological Oncology considers for publication articles dealing with experimental and clinical aspects of neoplastic diseases of the hemopoietic and lymphoid systems and relevant related matters. Translational studies applying basic science to clinical issues are particularly welcomed. Manuscripts dealing with the following areas are encouraged:
-Clinical practice and management of hematological neoplasia, including: acute and chronic leukemias, malignant lymphomas, myeloproliferative disorders
-Diagnostic investigations, including imaging and laboratory assays
-Epidemiology, pathology and pathobiology of hematological neoplasia of hematological diseases
-Therapeutic issues including Phase 1, 2 or 3 trials as well as allogeneic and autologous stem cell transplantation studies
-Aspects of the cell biology, molecular biology, molecular genetics and cytogenetics of normal or diseased hematopoeisis and lymphopoiesis, including stem cells and cytokines and other regulatory systems.
Concise, topical review material is welcomed, especially if it makes new concepts and ideas accessible to a wider community. Proposals for review material may be discussed with the Editor-in-Chief. Collections of case material and case reports will be considered only if they have broader scientific or clinical relevance.