Did Salts in Seawater Play an Important Role in the Adsorption of Molecules on Minerals in the Prebiotic Earth? The Case of the Adsorption of Thiocyanate onto Forsterite-91.

IF 1.9 4区 物理与天体物理 Q2 BIOLOGY
Giulio Wilgner Ferreira, Rafael Block Samulewski, Flávio Francisco Ivashita, Andrea Paesano, Alexandre Urbano, Dimas Augusto Morozin Zaia
{"title":"Did Salts in Seawater Play an Important Role in the Adsorption of Molecules on Minerals in the Prebiotic Earth? The Case of the Adsorption of Thiocyanate onto Forsterite-91.","authors":"Giulio Wilgner Ferreira, Rafael Block Samulewski, Flávio Francisco Ivashita, Andrea Paesano, Alexandre Urbano, Dimas Augusto Morozin Zaia","doi":"10.1007/s11084-023-09640-3","DOIUrl":null,"url":null,"abstract":"<p><p>Thiocyanate may have played as important a role as cyanide in the synthesis of several molecules. However, its concentration in the seas of the prebiotic Earth could have been very low. Thiocyanate was dissolved in two different seawaters: a) a composition that comes close to the seawater of the prebiotic Earth (seawater-B, Ca<sup>2+</sup> and Cl<sup>-</sup>) and b) a seawater (seawater-A, Mg<sup>2+</sup> and SO<sub>4</sub><sup>2-</sup>) that could be related to the seas of Mars and other moons in the solar system. In addition, forsterite-91 was a very common mineral on the prebiotic Earth and Mars. Two important results are reported in this work: 1) thiocyanate adsorbed onto forsterite-91 and 2) the amount of thiocyanate adsorbed, adsorption thermodynamic, and adsorption kinetic depend on the composition of the artificial seawater. For all experiments, the adsorption was thermodynamically favorable (ΔG < 0). The adsorption data fitted well in the Freundlich and Langmuir-Freundlich models. When dissolving thiocyanate in seawater 4.0-A-Gy and seawater 4.0-B-Gy, the adsorption of thiocyanate onto forsterite-91 was ruled by enthalpy and entropy, respectively. As shown by n values, the thiocyanate/foraterite-91 system is heterogeneous. For all kinetic data, the pseudo-first-order model presented the best fit. The constant rate for thiocyanate dissolved in seawater 4.0-A-Gy was twice that compared to thiocyanate dissolved in seawater 4.0-B-Gy or ultrapure-water. The interaction between thiocyanate and Fe<sup>2+</sup> of forsterite-91 was with the nitrogen atom of thiocyanate. In the presence of thiocyanate, sulfate interacts with forsterite-91 as an inner-sphere surface complex, and without thiocyanate as an outer-sphere surface complex.</p>","PeriodicalId":19614,"journal":{"name":"Origins of Life and Evolution of Biospheres","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Origins of Life and Evolution of Biospheres","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11084-023-09640-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Thiocyanate may have played as important a role as cyanide in the synthesis of several molecules. However, its concentration in the seas of the prebiotic Earth could have been very low. Thiocyanate was dissolved in two different seawaters: a) a composition that comes close to the seawater of the prebiotic Earth (seawater-B, Ca2+ and Cl-) and b) a seawater (seawater-A, Mg2+ and SO42-) that could be related to the seas of Mars and other moons in the solar system. In addition, forsterite-91 was a very common mineral on the prebiotic Earth and Mars. Two important results are reported in this work: 1) thiocyanate adsorbed onto forsterite-91 and 2) the amount of thiocyanate adsorbed, adsorption thermodynamic, and adsorption kinetic depend on the composition of the artificial seawater. For all experiments, the adsorption was thermodynamically favorable (ΔG < 0). The adsorption data fitted well in the Freundlich and Langmuir-Freundlich models. When dissolving thiocyanate in seawater 4.0-A-Gy and seawater 4.0-B-Gy, the adsorption of thiocyanate onto forsterite-91 was ruled by enthalpy and entropy, respectively. As shown by n values, the thiocyanate/foraterite-91 system is heterogeneous. For all kinetic data, the pseudo-first-order model presented the best fit. The constant rate for thiocyanate dissolved in seawater 4.0-A-Gy was twice that compared to thiocyanate dissolved in seawater 4.0-B-Gy or ultrapure-water. The interaction between thiocyanate and Fe2+ of forsterite-91 was with the nitrogen atom of thiocyanate. In the presence of thiocyanate, sulfate interacts with forsterite-91 as an inner-sphere surface complex, and without thiocyanate as an outer-sphere surface complex.

Abstract Image

海水中的盐分在前生物地球矿物对分子的吸附中发挥了重要作用吗?硫氰酸盐在 Forsterite-91 上的吸附案例。
硫氰酸盐可能与氰化物一样在多种分子的合成过程中发挥了重要作用。然而,它在前生物地球海洋中的浓度可能非常低。硫氰酸盐溶解在两种不同的海水中:a) 成分接近前生物地球的海水(海水-B,Ca2+ 和 Cl-),b) 可能与火星和太阳系其他卫星的海水有关的海水(海水-A,Mg2+ 和 SO42-)。此外,雌甾-91 是前生物时期地球和火星上一种非常常见的矿物。这项工作报告了两项重要成果:1)硫氰酸盐被吸附到了 forsterite-91 上;2)硫氰酸盐的吸附量、吸附热力学和吸附动力学取决于人造海水的成分。在所有实验中,吸附都是热力学上有利的(ΔG 2+ 与硫氰酸盐的氮原子在一起。在有硫氰酸盐存在的情况下,硫酸盐与紫苑石-91 的相互作用是一种内球表面络合物,而在没有硫氰酸盐存在的情况下则是一种外球表面络合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
15.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: The subject of the origin and early evolution of life is an inseparable part of the general discipline of Astrobiology. The journal Origins of Life and Evolution of Biospheres places special importance on the interconnection as well as the interdisciplinary nature of these fields, as is reflected in its subject coverage. While any scientific study which contributes to our understanding of the origins, evolution and distribution of life in the Universe is suitable for inclusion in the journal, some examples of important areas of interest are: prebiotic chemistry and the nature of Earth''s early environment, self-replicating and self-organizing systems, the theory of the RNA world and of other possible precursor systems, and the problem of the origin of the genetic code. Early evolution of life - as revealed by such techniques as the elucidation of biochemical pathways, molecular phylogeny, the study of Precambrian sediments and fossils and of major innovations in microbial evolution - forms a second focus. As a larger and more general context for these areas, Astrobiology refers to the origin and evolution of life in a cosmic setting, and includes interstellar chemistry, planetary atmospheres and habitable zones, the organic chemistry of comets, meteorites, asteroids and other small bodies, biological adaptation to extreme environments, life detection and related areas. Experimental papers, theoretical articles and authorative literature reviews are all appropriate forms for submission to the journal. In the coming years, Astrobiology will play an even greater role in defining the journal''s coverage and keeping Origins of Life and Evolution of Biospheres well-placed in this growing interdisciplinary field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信