Jing Xing, Songtao Fan, Hongyang Liu, Su Zhang, Nan Li
{"title":"CircZNF644 aggravates lipopolysaccharide-induced HK-2 cell impairment via the miR-140-5p/MLKL axis.","authors":"Jing Xing, Songtao Fan, Hongyang Liu, Su Zhang, Nan Li","doi":"10.1007/s10863-022-09946-3","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNAs (circRNAs) play vital roles in human diseases, including acute kidney injury (AKI). In this paper, we focused on the effect of circRNA zinc finger protein 644 (circZNF644) on AKI cell model progression. qRT-PCR was conducted for the levels of circZNF644, ZNF644, miR-140-5p and mixed lineage kinase domain like pseudokinase (MLKL). RNase R assay, actinomycin D assay and subcellular fraction analysis were conducted to analyze the features of circZNF644. CCK-8 assay and EdU assay were used to explore cell proliferation. Flow cytometry analysis was conducted to analyze cell cycle and cell apoptosis. Western blot assay was executed for protein levels. ELISA was performed for the levels of inflammatory cytokines. The relationships among circZNF644, miR-140-5p and MLKL were analyzed by dual-luciferase reporter assay and RIP assay. CircZNF644 was upregulated in LPS-stimulated HK-2 cells. LPS-mediated inhibitory effects on cell proliferation and cell cycle and promotional effects on apoptosis and inflammation were reversed by circZNF644 knockdown. CircZNF644 directly interacted with miR-140-5p and MLKL was the target gene of miR-140-5p. The impact of circZNF644 knockdown on HK-2 cell injury was relieved by miR-140-5p inhibition. Moreover, miR-140-5p enhancement alleviated LPS-triggered HK-2 cell damage, while MLKL elevation reversed the effect. CircZNF644 knockdown protected HK-2 cells from LPS-induced injury by altering miR-140-5p/MLKL pathway, suggesting that circZNF644 may be a hopeful therapeutic target for AKI.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-022-09946-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Circular RNAs (circRNAs) play vital roles in human diseases, including acute kidney injury (AKI). In this paper, we focused on the effect of circRNA zinc finger protein 644 (circZNF644) on AKI cell model progression. qRT-PCR was conducted for the levels of circZNF644, ZNF644, miR-140-5p and mixed lineage kinase domain like pseudokinase (MLKL). RNase R assay, actinomycin D assay and subcellular fraction analysis were conducted to analyze the features of circZNF644. CCK-8 assay and EdU assay were used to explore cell proliferation. Flow cytometry analysis was conducted to analyze cell cycle and cell apoptosis. Western blot assay was executed for protein levels. ELISA was performed for the levels of inflammatory cytokines. The relationships among circZNF644, miR-140-5p and MLKL were analyzed by dual-luciferase reporter assay and RIP assay. CircZNF644 was upregulated in LPS-stimulated HK-2 cells. LPS-mediated inhibitory effects on cell proliferation and cell cycle and promotional effects on apoptosis and inflammation were reversed by circZNF644 knockdown. CircZNF644 directly interacted with miR-140-5p and MLKL was the target gene of miR-140-5p. The impact of circZNF644 knockdown on HK-2 cell injury was relieved by miR-140-5p inhibition. Moreover, miR-140-5p enhancement alleviated LPS-triggered HK-2 cell damage, while MLKL elevation reversed the effect. CircZNF644 knockdown protected HK-2 cells from LPS-induced injury by altering miR-140-5p/MLKL pathway, suggesting that circZNF644 may be a hopeful therapeutic target for AKI.