Huiying Qi, Huijuan Cao, Yajie Zhao, Yaqin Cao, Qide Jin, Yeping Wang, Kun Zhang, Daogui Deng
{"title":"Cloning and functional analysis of the molting gene CYP302A1 of Daphnia sinensis.","authors":"Huiying Qi, Huijuan Cao, Yajie Zhao, Yaqin Cao, Qide Jin, Yeping Wang, Kun Zhang, Daogui Deng","doi":"10.1186/s12983-023-00483-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Molting is an important physiological process in the growth and development of arthropoda, which is mainly regulated by juvenile hormone and ecdysone. CYP302A1 is a key enzyme which plays a critical role in the synthesis of ecdysone in insects, but it has not been identified in cladocera.</p><p><strong>Results: </strong>The CYP302Al gene of Daphnia sinensis was cloned and its function was analyzed in this paper. The CYP302Al gene of D. sinensis was 5926 bp in full-length, with an open reading frame (ORF) of 1596 bp that encoded 531 amino acids (aa), a molecular weight of 60.82 kDa and an isoelectric point of 9.29. The amino acid sequence analysis revealed that there were five characteristic conserved regions of cytochrome P450 family (namely helix-C, helix-K, helix-I, PERF and heme-binding). In dsRNA mediated experiment, the expression level of CYP302A1 gene decreased significantly (knock-down of 56.22%) in the 5% Escherichia coli concentration treatment. In addition, the expression levels of EcR and USP and HR3 genes in the downstream were also significantly decreased, whereas that of FTZ-f1 gene increased significantly. In the 5% E. coli treatment, the molting time at maturity of D. sinensis prolonged, and the development of embryos in the incubation capsule appeared abnormal or disintegrated. The whole-mount in situ hybridization showed that the CYP302A1 gene of D. sinensis had six expression sites before RNA interference (RNAi), which located in the first antennal ganglion, ovary, cecae, olfactory hair, thoracic limb and tail spine. However, the expression signal of the CYP302A1 gene of D. sinensis disappeared in the first antennal ganglion and obviously attenuated in the ovary after RNAi.</p><p><strong>Conclusion: </strong>The CYP302A1 gene played an important role in the ecdysone synthesis pathway of D. sinensis, and the knock-down of the gene affected the molting and reproduction of D. sinensis.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835317/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12983-023-00483-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Background: Molting is an important physiological process in the growth and development of arthropoda, which is mainly regulated by juvenile hormone and ecdysone. CYP302A1 is a key enzyme which plays a critical role in the synthesis of ecdysone in insects, but it has not been identified in cladocera.
Results: The CYP302Al gene of Daphnia sinensis was cloned and its function was analyzed in this paper. The CYP302Al gene of D. sinensis was 5926 bp in full-length, with an open reading frame (ORF) of 1596 bp that encoded 531 amino acids (aa), a molecular weight of 60.82 kDa and an isoelectric point of 9.29. The amino acid sequence analysis revealed that there were five characteristic conserved regions of cytochrome P450 family (namely helix-C, helix-K, helix-I, PERF and heme-binding). In dsRNA mediated experiment, the expression level of CYP302A1 gene decreased significantly (knock-down of 56.22%) in the 5% Escherichia coli concentration treatment. In addition, the expression levels of EcR and USP and HR3 genes in the downstream were also significantly decreased, whereas that of FTZ-f1 gene increased significantly. In the 5% E. coli treatment, the molting time at maturity of D. sinensis prolonged, and the development of embryos in the incubation capsule appeared abnormal or disintegrated. The whole-mount in situ hybridization showed that the CYP302A1 gene of D. sinensis had six expression sites before RNA interference (RNAi), which located in the first antennal ganglion, ovary, cecae, olfactory hair, thoracic limb and tail spine. However, the expression signal of the CYP302A1 gene of D. sinensis disappeared in the first antennal ganglion and obviously attenuated in the ovary after RNAi.
Conclusion: The CYP302A1 gene played an important role in the ecdysone synthesis pathway of D. sinensis, and the knock-down of the gene affected the molting and reproduction of D. sinensis.
期刊介绍:
Frontiers in Zoology is an open access, peer-reviewed online journal publishing high quality research articles and reviews on all aspects of animal life.
As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem.
Frontiers in Zoology is the first open access journal focusing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost.
The journal was initiated and is supported by the Deutsche Zoologische Gesellschaft, one of the largest national zoological societies with more than a century-long tradition in promoting high-level zoological research.