Susanna Mosleh;Jason B. Coder;Christopher G. Scully;Keith Forsyth;Mohamad Omar Al Kalaa
{"title":"Monitoring Respiratory Motion With Wi-Fi CSI: Characterizing Performance and the BreatheSmart Algorithm","authors":"Susanna Mosleh;Jason B. Coder;Christopher G. Scully;Keith Forsyth;Mohamad Omar Al Kalaa","doi":"10.1109/ACCESS.2022.3230003","DOIUrl":null,"url":null,"abstract":"Respiratory motion (i.e., motion pattern and rate) can provide valuable information for many medical situations. This information may help in the diagnosis of different health disorders and diseases. Wi-Fi-based respiratory monitoring schemes utilizing commercial off-the-shelf (COTS) devices can provide contactless, low-cost, simple, and scalable respiratory monitoring without requiring specialized hardware. Despite intense research efforts, an in-depth investigation on how to evaluate this type of technology is missing. We demonstrated and assessed the feasibility of monitoring and extracting human respiratory motion from Wi-Fi channel state information (CSI) data. This demonstration involves implementing an end-to-end system for a COTS-based hardware platform, control software, data acquisition, and a proposed processing algorithm. The processing algorithm is a novel deep-learning-based approach that exploits small changes in both CSI amplitude and phase information to learn high-level abstractions of breathing-induced chest movements and to reveal the unique characteristics of their difference. We also conducted extensive laboratory experiments demonstrating an assessment technique that can be replicated when quantifying the performance of similar systems. The results indicate that the proposed scheme can classify respiratory patterns and rates with an accuracy of 99.54% and 98.69%, respectively, in moderately degraded RF channels. Comprehensive data acquisition revealed the capability of the proposed system in detecting and classifying respiratory motions. Understanding the feasible limits and potential failure factors of Wi-Fi CSI-based respiratory monitoring scheme — and how to evaluate them — is an essential step toward the practical deployment of this technology. This study discusses ideas for further expansion of this technology.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"10 ","pages":"131932-131951"},"PeriodicalIF":3.4000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9989347","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9989347/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 7
Abstract
Respiratory motion (i.e., motion pattern and rate) can provide valuable information for many medical situations. This information may help in the diagnosis of different health disorders and diseases. Wi-Fi-based respiratory monitoring schemes utilizing commercial off-the-shelf (COTS) devices can provide contactless, low-cost, simple, and scalable respiratory monitoring without requiring specialized hardware. Despite intense research efforts, an in-depth investigation on how to evaluate this type of technology is missing. We demonstrated and assessed the feasibility of monitoring and extracting human respiratory motion from Wi-Fi channel state information (CSI) data. This demonstration involves implementing an end-to-end system for a COTS-based hardware platform, control software, data acquisition, and a proposed processing algorithm. The processing algorithm is a novel deep-learning-based approach that exploits small changes in both CSI amplitude and phase information to learn high-level abstractions of breathing-induced chest movements and to reveal the unique characteristics of their difference. We also conducted extensive laboratory experiments demonstrating an assessment technique that can be replicated when quantifying the performance of similar systems. The results indicate that the proposed scheme can classify respiratory patterns and rates with an accuracy of 99.54% and 98.69%, respectively, in moderately degraded RF channels. Comprehensive data acquisition revealed the capability of the proposed system in detecting and classifying respiratory motions. Understanding the feasible limits and potential failure factors of Wi-Fi CSI-based respiratory monitoring scheme — and how to evaluate them — is an essential step toward the practical deployment of this technology. This study discusses ideas for further expansion of this technology.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.