{"title":"HM-chromanone alleviates hyperglycemia and inflammation in mice with endotoxin-induced insulin resistance.","authors":"Ha J Lim, Jae E Park, Ji S Han","doi":"10.1093/toxres/tfad057","DOIUrl":null,"url":null,"abstract":"<p><p>This study was designed to investigate whether (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone alleviates inflammation and hyperglycemia in mice with endotoxin-induced insulin resistance. (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone (10, 30, and 50 mg/kg bodyweight) was orally pre-administered to C57BL/6 J mice. An hour later, lipopolysaccharides (20 mg/kg bodyweight) was administered intraperitoneally to induce endotoxins. Blood samples were collected from the tail vein of the mice every 0, 30, and 90 min. The results indicated that (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone effectively regulated blood glucose levels in mice with endotoxin-induced insulin resistance. Furthermore, (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone significantly reduced the phosphorylation of mammalian target of rapamycin, ribosomal protein S6 kinase 1, and protein kinase C θ. Additionally, (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone suppressed the phosphorylation of c-Jun-NH2-terminal kinase and IkB kinase β, thereby decreasing the phosphorylation of inhibitor of nuclear factor kappa-B α and activating the nuclear factor-κB and activator protein-1 in the liver. Therefore, the expression of tumor necrosis factor-α, interleukin-6, and interleukin-1β was significantly reduced by suppressing the nuclear factor-κB and activator protein 1 activity. Suppression of mammalian target of rapamycin, S6 kinase 1, protein kinase C θ, c-Jun-NH2-terminal kinase, and IkB kinase β also ameliorated insulin resistance by reducing the phosphorylation of insulin receptor substrate-1 serine 307, thereby decreasing hyperglycemia. These findings suggest that (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone can alleviate hyperglycemia and inflammation in mice with endotoxin-induced insulin resistance.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"12 4","pages":"665-674"},"PeriodicalIF":2.2000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470335/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfad057","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study was designed to investigate whether (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone alleviates inflammation and hyperglycemia in mice with endotoxin-induced insulin resistance. (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone (10, 30, and 50 mg/kg bodyweight) was orally pre-administered to C57BL/6 J mice. An hour later, lipopolysaccharides (20 mg/kg bodyweight) was administered intraperitoneally to induce endotoxins. Blood samples were collected from the tail vein of the mice every 0, 30, and 90 min. The results indicated that (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone effectively regulated blood glucose levels in mice with endotoxin-induced insulin resistance. Furthermore, (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone significantly reduced the phosphorylation of mammalian target of rapamycin, ribosomal protein S6 kinase 1, and protein kinase C θ. Additionally, (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone suppressed the phosphorylation of c-Jun-NH2-terminal kinase and IkB kinase β, thereby decreasing the phosphorylation of inhibitor of nuclear factor kappa-B α and activating the nuclear factor-κB and activator protein-1 in the liver. Therefore, the expression of tumor necrosis factor-α, interleukin-6, and interleukin-1β was significantly reduced by suppressing the nuclear factor-κB and activator protein 1 activity. Suppression of mammalian target of rapamycin, S6 kinase 1, protein kinase C θ, c-Jun-NH2-terminal kinase, and IkB kinase β also ameliorated insulin resistance by reducing the phosphorylation of insulin receptor substrate-1 serine 307, thereby decreasing hyperglycemia. These findings suggest that (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone can alleviate hyperglycemia and inflammation in mice with endotoxin-induced insulin resistance.