Silvia Sánchez, Ulises Juárez, Julieta Domínguez, Bertha Molina, Rehotbevely Barrientos, Angélica Martínez-Hernández, Alessandra Carnevale, Patricia Grether-González, Dora Gilda Mayen, Camilo Villarroel, Esther Lieberman, Emiy Yokoyama, Victoria Del Castillo, Leda Torres, Sara Frias
{"title":"Frequent copy number variants in a cohort of Mexican-Mestizo individuals.","authors":"Silvia Sánchez, Ulises Juárez, Julieta Domínguez, Bertha Molina, Rehotbevely Barrientos, Angélica Martínez-Hernández, Alessandra Carnevale, Patricia Grether-González, Dora Gilda Mayen, Camilo Villarroel, Esther Lieberman, Emiy Yokoyama, Victoria Del Castillo, Leda Torres, Sara Frias","doi":"10.1186/s13039-022-00631-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The human genome presents variation at distinct levels, copy number variants (CNVs) are DNA segments of variable lengths that range from several base pairs to megabases and are present at a variable number of copies in human genomes. Common CNVs have no apparent influence on the phenotype; however, some rare CNVs have been associated with phenotypic traits, depending on their size and gene content. CNVs are detected by microarrays of different densities and are generally visualized, and their frequencies analysed using the HapMap as default reference population. Nevertheless, this default reference is inadequate when the samples analysed are from people from Mexico, since population with a Hispanic genetic background are minimally represented. In this work, we describe the variation in the frequencies of four common CNVs in Mexican-Mestizo individuals.</p><p><strong>Results: </strong>In a cohort of 147 unrelated Mexican-Mestizo individuals, we found that the common CNVs 2p11.2 (99.6%), 8p11.22 (54.5%), 14q32.33 (100%), and 15q11.2 (71.1%) appeared with unexpectedly high frequencies when contrasted with the HapMap reference (ChAS). Yet, while when comparing to an ethnically related reference population, these differences were significantly reduced or even disappeared.</p><p><strong>Conclusion: </strong>The findings in this work contribute to (1) a better description of the CNVs characteristics of the Mexican Mestizo population and enhance the knowledge of genome variation in different ethnic groups. (2) emphasize the importance of contrasting CNVs identified in studied individuals against a reference group that-as best as possible-share the same ethnicity while keeping this relevant information in mind when conducting CNV studies at the population or clinical level.</p>","PeriodicalId":19099,"journal":{"name":"Molecular Cytogenetics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835318/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cytogenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13039-022-00631-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The human genome presents variation at distinct levels, copy number variants (CNVs) are DNA segments of variable lengths that range from several base pairs to megabases and are present at a variable number of copies in human genomes. Common CNVs have no apparent influence on the phenotype; however, some rare CNVs have been associated with phenotypic traits, depending on their size and gene content. CNVs are detected by microarrays of different densities and are generally visualized, and their frequencies analysed using the HapMap as default reference population. Nevertheless, this default reference is inadequate when the samples analysed are from people from Mexico, since population with a Hispanic genetic background are minimally represented. In this work, we describe the variation in the frequencies of four common CNVs in Mexican-Mestizo individuals.
Results: In a cohort of 147 unrelated Mexican-Mestizo individuals, we found that the common CNVs 2p11.2 (99.6%), 8p11.22 (54.5%), 14q32.33 (100%), and 15q11.2 (71.1%) appeared with unexpectedly high frequencies when contrasted with the HapMap reference (ChAS). Yet, while when comparing to an ethnically related reference population, these differences were significantly reduced or even disappeared.
Conclusion: The findings in this work contribute to (1) a better description of the CNVs characteristics of the Mexican Mestizo population and enhance the knowledge of genome variation in different ethnic groups. (2) emphasize the importance of contrasting CNVs identified in studied individuals against a reference group that-as best as possible-share the same ethnicity while keeping this relevant information in mind when conducting CNV studies at the population or clinical level.
期刊介绍:
Molecular Cytogenetics encompasses all aspects of chromosome biology and the application of molecular cytogenetic techniques in all areas of biology and medicine, including structural and functional organization of the chromosome and nucleus, genome variation, expression and evolution, chromosome abnormalities and genomic variations in medical genetics and tumor genetics.
Molecular Cytogenetics primarily defines a large set of the techniques that operate either with the entire genome or with specific targeted DNA sequences. Topical areas include, but are not limited to:
-Structural and functional organization of chromosome and nucleus-
Genome variation, expression and evolution-
Animal and plant molecular cytogenetics and genomics-
Chromosome abnormalities and genomic variations in clinical genetics-
Applications in preimplantation, pre- and post-natal diagnosis-
Applications in the central nervous system, cancer and haematology research-
Previously unreported applications of molecular cytogenetic techniques-
Development of new techniques or significant enhancements to established techniques.
This journal is a source for numerous scientists all over the world, who wish to improve or introduce molecular cytogenetic techniques into their practice.