Anne Krause, Ivo da Mota de Moreira, Nicolas Walser, Daniel Memmert, Ramona Ritzmann
{"title":"Whole-Body Electromyostimulation Impacts Physiological Responses During Aerobic Running: A Randomized Trial.","authors":"Anne Krause, Ivo da Mota de Moreira, Nicolas Walser, Daniel Memmert, Ramona Ritzmann","doi":"10.1080/02701367.2022.2120949","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> The aim of the current study was to evaluate the physiological and metabolic responses to running with whole-body electromyostimulation (wbEMS) compared to running without electromyostimulation (control, CG). <b>Methods:</b> Twenty healthy participants (9 male/11 female, age 42 ±7 years) conducted an incremental step test with respiratory gas analysis until exhaustion. Trials were conducted as wbEMS and CG in a random order. As outcome measures, (A) objective total exhaustion, (B) athletic responses (max. time and velocity) and (C) physiological and metabolic responses (V'O<sub>2</sub>/ kg, V'E, EE, RER, lactate) were compared. (D) The impact on the skeletal muscle was assessed prior, 48 h & 72 h after trial. <b>Results:</b> During both trials, participants (A) ran until total exhaustion. Nonetheless, (B) time and velocity till exhaustion as well as (C) RER prior to the first lactate threshold and V'E were reduced with wbEMS. All other correlates did not differ significantly between wbEMS and CG. Following 48 h and 72 h after the trial with wbEMS, (D) the impact on the skeletal muscle was 7- to 9-fold higher compared to baseline values. Values differed significantly to those after running without wbEMS. <b>Conclusion:</b> With the additional stimulation during voluntary activation, wbEMS induces earlier fatigue and a shift in energy metabolism toward fat utilization. Even during aerobic endurance tasks, a great impact on the skeletal muscle indicated by the rise in CK could be observed which promotes wbEMS as an alternative training stimulus that is easy-to-apply and effective during endurance training.</p>","PeriodicalId":54491,"journal":{"name":"Research Quarterly for Exercise and Sport","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Quarterly for Exercise and Sport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02701367.2022.2120949","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The aim of the current study was to evaluate the physiological and metabolic responses to running with whole-body electromyostimulation (wbEMS) compared to running without electromyostimulation (control, CG). Methods: Twenty healthy participants (9 male/11 female, age 42 ±7 years) conducted an incremental step test with respiratory gas analysis until exhaustion. Trials were conducted as wbEMS and CG in a random order. As outcome measures, (A) objective total exhaustion, (B) athletic responses (max. time and velocity) and (C) physiological and metabolic responses (V'O2/ kg, V'E, EE, RER, lactate) were compared. (D) The impact on the skeletal muscle was assessed prior, 48 h & 72 h after trial. Results: During both trials, participants (A) ran until total exhaustion. Nonetheless, (B) time and velocity till exhaustion as well as (C) RER prior to the first lactate threshold and V'E were reduced with wbEMS. All other correlates did not differ significantly between wbEMS and CG. Following 48 h and 72 h after the trial with wbEMS, (D) the impact on the skeletal muscle was 7- to 9-fold higher compared to baseline values. Values differed significantly to those after running without wbEMS. Conclusion: With the additional stimulation during voluntary activation, wbEMS induces earlier fatigue and a shift in energy metabolism toward fat utilization. Even during aerobic endurance tasks, a great impact on the skeletal muscle indicated by the rise in CK could be observed which promotes wbEMS as an alternative training stimulus that is easy-to-apply and effective during endurance training.
期刊介绍:
Research Quarterly for Exercise and Sport publishes research in the art and science of human movement that contributes significantly to the knowledge base of the field as new information, reviews, substantiation or contradiction of previous findings, development of theory, or as application of new or improved techniques. The goals of RQES are to provide a scholarly outlet for knowledge that: (a) contributes to the study of human movement, particularly its cross-disciplinary and interdisciplinary nature; (b) impacts theory and practice regarding human movement; (c) stimulates research about human movement; and (d) provides theoretical reviews and tutorials related to the study of human movement. The editorial board, associate editors, and external reviewers assist the editor-in-chief. Qualified reviewers in the appropriate subdisciplines review manuscripts deemed suitable. Authors are usually advised of the decision on their papers within 75–90 days.