Design and implementation of an adaptive fuzzy sliding mode controller for drug delivery in treatment of vascular cancer tumours and its optimisation using genetic algorithm tool
{"title":"Design and implementation of an adaptive fuzzy sliding mode controller for drug delivery in treatment of vascular cancer tumours and its optimisation using genetic algorithm tool","authors":"Ehsan Sadeghi Ghasemabad, Iman Zamani, Hami Tourajizadeh, Mahdi Mirhadi, Zahra Goorkani Zarandi","doi":"10.1049/syb2.12051","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the side effects of drug therapy in the process of cancer treatment are reduced by designing two optimal non-linear controllers. The related gains of the designed controllers are optimised using genetic algorithm and simultaneously are adapted by employing the Fuzzy scheduling method. The cancer dynamic model is extracted with five differential equations, including normal cells, endothelial cells, cancer cells, and the amount of two chemotherapy and anti-angiogenic drugs left in the body as the engaged state variables, while double drug injection is considered as the corresponding controlling signals of the mentioned state space. This treatment aims to reduce the tumour cells by providing a timely schedule for drug dosage. In chemotherapy, not only the cancer cells are killed but also other healthy cells will be destroyed, so the rate of drug injection is highly significant. It is shown that the simultaneous application of chemotherapy and anti-angiogenic therapy is more efficient than single chemotherapy. Two different non-linear controllers are employed and their performances are compared. Simulation results and comparison studies show that not only adding the anti-angiogenic reduce the side effects of chemotherapy but also the proposed robust controller of sliding mode provides a faster and stronger treatment in the presence of patient parametric uncertainties in an optimal way. As a result of the proposed closed-loop drug treatment, the tumour cells rapidly decrease to zero, while the normal cells remain healthy simultaneously. Also, the injection rate of the chemotherapy drug is very low after a short time and converges to zero.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675414/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12051","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, the side effects of drug therapy in the process of cancer treatment are reduced by designing two optimal non-linear controllers. The related gains of the designed controllers are optimised using genetic algorithm and simultaneously are adapted by employing the Fuzzy scheduling method. The cancer dynamic model is extracted with five differential equations, including normal cells, endothelial cells, cancer cells, and the amount of two chemotherapy and anti-angiogenic drugs left in the body as the engaged state variables, while double drug injection is considered as the corresponding controlling signals of the mentioned state space. This treatment aims to reduce the tumour cells by providing a timely schedule for drug dosage. In chemotherapy, not only the cancer cells are killed but also other healthy cells will be destroyed, so the rate of drug injection is highly significant. It is shown that the simultaneous application of chemotherapy and anti-angiogenic therapy is more efficient than single chemotherapy. Two different non-linear controllers are employed and their performances are compared. Simulation results and comparison studies show that not only adding the anti-angiogenic reduce the side effects of chemotherapy but also the proposed robust controller of sliding mode provides a faster and stronger treatment in the presence of patient parametric uncertainties in an optimal way. As a result of the proposed closed-loop drug treatment, the tumour cells rapidly decrease to zero, while the normal cells remain healthy simultaneously. Also, the injection rate of the chemotherapy drug is very low after a short time and converges to zero.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.