Véronique Latreille, Tamir Avigdor, John Thomas, Joelle Crane, Viviane Sziklas, Marilyn Jones-Gotman, Birgit Frauscher
{"title":"Scalp and hippocampal sleep correlates of memory function in drug-resistant temporal lobe epilepsy.","authors":"Véronique Latreille, Tamir Avigdor, John Thomas, Joelle Crane, Viviane Sziklas, Marilyn Jones-Gotman, Birgit Frauscher","doi":"10.1093/sleep/zsad228","DOIUrl":null,"url":null,"abstract":"<p><p>Seminal animal studies demonstrated the role of sleep oscillations such as cortical slow waves, thalamocortical spindles, and hippocampal ripples in memory consolidation. In humans, whether ripples are involved in sleep-related memory processes is less clear. Here, we explored the interactions between sleep oscillations (measured as traits) and general episodic memory abilities in 26 adults with drug-resistant temporal lobe epilepsy who performed scalp-intracranial electroencephalographic recordings and neuropsychological testing, including two analogous hippocampal-dependent verbal and nonverbal memory tasks. We explored the relationships between hemispheric scalp (spindles, slow waves) and hippocampal physiological and pathological oscillations (spindles, slow waves, ripples, and epileptic spikes) and material-specific memory function. To differentiate physiological from pathological ripples, we used multiple unbiased data-driven clustering approaches. At the individual level, we found material-specific cerebral lateralization effects (left-verbal memory, right-nonverbal memory) for all scalp spindles (rs > 0.51, ps < 0.01) and fast spindles (rs > 0.61, ps < 0.002). Hippocampal epileptic spikes and short pathological ripples, but not physiological oscillations, were negatively (rs > -0.59, ps < 0.01) associated with verbal learning and retention scores, with left lateralizing and antero-posterior effects. However, data-driven clustering failed to separate the ripple events into defined clusters. Correlation analyses with the resulting clusters revealed no meaningful or significant associations with the memory scores. Our results corroborate the role of scalp spindles in memory processes in patients with drug-resistant temporal lobe epilepsy. Yet, physiological and pathological ripples were not separable when using data-driven clustering, and thus our findings do not provide support for a role of sleep ripples as trait-like characteristics of general memory abilities in epilepsy.</p>","PeriodicalId":49514,"journal":{"name":"Sleep","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851866/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/sleep/zsad228","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Seminal animal studies demonstrated the role of sleep oscillations such as cortical slow waves, thalamocortical spindles, and hippocampal ripples in memory consolidation. In humans, whether ripples are involved in sleep-related memory processes is less clear. Here, we explored the interactions between sleep oscillations (measured as traits) and general episodic memory abilities in 26 adults with drug-resistant temporal lobe epilepsy who performed scalp-intracranial electroencephalographic recordings and neuropsychological testing, including two analogous hippocampal-dependent verbal and nonverbal memory tasks. We explored the relationships between hemispheric scalp (spindles, slow waves) and hippocampal physiological and pathological oscillations (spindles, slow waves, ripples, and epileptic spikes) and material-specific memory function. To differentiate physiological from pathological ripples, we used multiple unbiased data-driven clustering approaches. At the individual level, we found material-specific cerebral lateralization effects (left-verbal memory, right-nonverbal memory) for all scalp spindles (rs > 0.51, ps < 0.01) and fast spindles (rs > 0.61, ps < 0.002). Hippocampal epileptic spikes and short pathological ripples, but not physiological oscillations, were negatively (rs > -0.59, ps < 0.01) associated with verbal learning and retention scores, with left lateralizing and antero-posterior effects. However, data-driven clustering failed to separate the ripple events into defined clusters. Correlation analyses with the resulting clusters revealed no meaningful or significant associations with the memory scores. Our results corroborate the role of scalp spindles in memory processes in patients with drug-resistant temporal lobe epilepsy. Yet, physiological and pathological ripples were not separable when using data-driven clustering, and thus our findings do not provide support for a role of sleep ripples as trait-like characteristics of general memory abilities in epilepsy.
期刊介绍:
SLEEP® publishes findings from studies conducted at any level of analysis, including:
Genes
Molecules
Cells
Physiology
Neural systems and circuits
Behavior and cognition
Self-report
SLEEP® publishes articles that use a wide variety of scientific approaches and address a broad range of topics. These may include, but are not limited to:
Basic and neuroscience studies of sleep and circadian mechanisms
In vitro and animal models of sleep, circadian rhythms, and human disorders
Pre-clinical human investigations, including the measurement and manipulation of sleep and circadian rhythms
Studies in clinical or population samples. These may address factors influencing sleep and circadian rhythms (e.g., development and aging, and social and environmental influences) and relationships between sleep, circadian rhythms, health, and disease
Clinical trials, epidemiology studies, implementation, and dissemination research.