Estimating the Efficiency Gain of Covariate-Adjusted Analyses in Future Clinical Trials Using External Data.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiudi Li, Sijia Li, Alex Luedtke
{"title":"Estimating the Efficiency Gain of Covariate-Adjusted Analyses in Future Clinical Trials Using External Data.","authors":"Xiudi Li,&nbsp;Sijia Li,&nbsp;Alex Luedtke","doi":"10.1093/jrsssb/qkad007","DOIUrl":null,"url":null,"abstract":"<p><p>We present a framework for using existing external data to identify and estimate the relative efficiency of a covariate-adjusted estimator compared to an unadjusted estimator in a future randomized trial. Under conditions, these relative efficiencies approximate the ratio of sample sizes needed to achieve a desired power. We develop semiparametrically efficient estimators of the relative efficiencies for several treatment effect estimands of interest with either fully or partially observed outcomes, allowing for the application of flexible statistical learning tools to estimate the nuisance functions. We propose an analytic Wald-type confidence interval and a double bootstrap scheme for statistical inference. We demonstrate the performance of the proposed methods through simulation studies and apply these methods to estimate the efficiency gain of covariate adjustment in Covid-19 therapeutic trials.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433828/pdf/nihms-1923273.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssb/qkad007","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We present a framework for using existing external data to identify and estimate the relative efficiency of a covariate-adjusted estimator compared to an unadjusted estimator in a future randomized trial. Under conditions, these relative efficiencies approximate the ratio of sample sizes needed to achieve a desired power. We develop semiparametrically efficient estimators of the relative efficiencies for several treatment effect estimands of interest with either fully or partially observed outcomes, allowing for the application of flexible statistical learning tools to estimate the nuisance functions. We propose an analytic Wald-type confidence interval and a double bootstrap scheme for statistical inference. We demonstrate the performance of the proposed methods through simulation studies and apply these methods to estimate the efficiency gain of covariate adjustment in Covid-19 therapeutic trials.

利用外部数据估计协变量调整分析在未来临床试验中的效率增益。
我们提出了一个框架,用于使用现有的外部数据来识别和估计在未来的随机试验中,与未调整的估计量相比,协变量调整估计量的相对效率。在一定条件下,这些相对效率近似于达到所需功率所需的样品大小之比。我们开发了具有完全或部分观察结果的几种治疗效果估计的相对效率的半参数有效估计器,允许应用灵活的统计学习工具来估计干扰函数。我们提出了一个分析的wald型置信区间和一个双自举的统计推断方案。我们通过模拟研究证明了所提出方法的性能,并应用这些方法来估计Covid-19治疗试验中协变量调整的效率增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信