{"title":"Interventions Risk Evaluation and Management in Aseptic Manufacturing.","authors":"Hal Baseman, Subrata Chakraborty, Michael A Long","doi":"10.5731/pdajpst.2020.012245","DOIUrl":null,"url":null,"abstract":"<p><p>Interventions performed by personnel during an aseptic process can be a key source of microbiological contamination of sterile biopharmaceutical products, irrespective of the type of manufacturing system used. Understanding the relative risk of this source of contamination provides valuable information to help make decisions for the design, qualification, validation, operation, monitoring, and evaluation of the aseptic process. These decisions can be used to improve the aseptic process and provide assurance of the sterility of the products. To achieve these goals, an assessment of the contamination risk is needed. This risk assessment should be objective, accurate, and useful. This article presents an Intervention Risk Evaluation Model (IREM) philosophy and an objective, accurate, and useful method for intervention risk determination. The IREM uses a key word approach to identify, obtain, measure, and evaluate intervention risk factors. This article presents a general discussion of the method with the help of a case study to illustrate the development of the model, whereas subsequent parts would focus on application of this model with practical examples. This not only attempts to create objectivity of the entire process, but it develops awareness of the associated risks among shop floor operators, which can lead to a reduction of the overall risk level of the process and an improvement in the sterility assurance level.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PDA Journal of Pharmaceutical Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5731/pdajpst.2020.012245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Interventions performed by personnel during an aseptic process can be a key source of microbiological contamination of sterile biopharmaceutical products, irrespective of the type of manufacturing system used. Understanding the relative risk of this source of contamination provides valuable information to help make decisions for the design, qualification, validation, operation, monitoring, and evaluation of the aseptic process. These decisions can be used to improve the aseptic process and provide assurance of the sterility of the products. To achieve these goals, an assessment of the contamination risk is needed. This risk assessment should be objective, accurate, and useful. This article presents an Intervention Risk Evaluation Model (IREM) philosophy and an objective, accurate, and useful method for intervention risk determination. The IREM uses a key word approach to identify, obtain, measure, and evaluate intervention risk factors. This article presents a general discussion of the method with the help of a case study to illustrate the development of the model, whereas subsequent parts would focus on application of this model with practical examples. This not only attempts to create objectivity of the entire process, but it develops awareness of the associated risks among shop floor operators, which can lead to a reduction of the overall risk level of the process and an improvement in the sterility assurance level.