{"title":"Tropical Carathéodory with Matroids.","authors":"Georg Loho, Raman Sanyal","doi":"10.1007/s00454-022-00446-0","DOIUrl":null,"url":null,"abstract":"<p><p>Bárány's colorful generalization of Carathéodory's Theorem combines geometrical and combinatorial constraints. Kalai-Meshulam (2005) and Holmsen (2016) generalized Bárány's theorem by replacing color classes with matroid constraints. In this note, we obtain corresponding results in tropical convexity, generalizing the Tropical Colorful Carathéodory Theorem of Gaubert-Meunier (2010). Our proof is inspired by geometric arguments and is reminiscent of matroid intersection. Moreover, we show that the topological approach fails in this setting. We also discuss tropical colorful linear programming and show that it is NP-complete. We end with thoughts and questions on generalizations to polymatroids, anti-matroids as well as examples and matroid simplicial depth.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"69 1","pages":"139-155"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805987/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-022-00446-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2
Abstract
Bárány's colorful generalization of Carathéodory's Theorem combines geometrical and combinatorial constraints. Kalai-Meshulam (2005) and Holmsen (2016) generalized Bárány's theorem by replacing color classes with matroid constraints. In this note, we obtain corresponding results in tropical convexity, generalizing the Tropical Colorful Carathéodory Theorem of Gaubert-Meunier (2010). Our proof is inspired by geometric arguments and is reminiscent of matroid intersection. Moreover, we show that the topological approach fails in this setting. We also discuss tropical colorful linear programming and show that it is NP-complete. We end with thoughts and questions on generalizations to polymatroids, anti-matroids as well as examples and matroid simplicial depth.
期刊介绍:
Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.