Exploring Occupation Differences in Reactions to COVID-19 Pandemic on Twitter

Yi Zhao , Haixu Xi , Chengzhi Zhang
{"title":"Exploring Occupation Differences in Reactions to COVID-19 Pandemic on Twitter","authors":"Yi Zhao ,&nbsp;Haixu Xi ,&nbsp;Chengzhi Zhang","doi":"10.2478/dim-2020-0032","DOIUrl":null,"url":null,"abstract":"<div><p>Coronavirus disease 2019 (COVID-19) pandemic-related information are flooded on social media, and analyzing this information from an occupational perspective can help us to understand the social implications of this unprecedented disruption. In this study, using a COVID-19-related dataset collected with the Twitter IDs, we conduct topic and sentiment analysis from the perspective of occupation, by leveraging Latent Dirichlet Allocation (LDA) topic modeling and Valence Aware Dictionary and sEntiment Reasoning (VADER) model, respectively. The experimental results indicate that there are significant topic preference differences between Twitter users with different occupations. However, occupation-linked affective differences are only partly demonstrated in our study; Twitter users with different income levels have nothing to do with sentiment expression on covid-19-related topics.</p></div>","PeriodicalId":72769,"journal":{"name":"Data and information management","volume":"5 1","pages":"Pages 110-118"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8969477/pdf/","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data and information management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2543925122000262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Coronavirus disease 2019 (COVID-19) pandemic-related information are flooded on social media, and analyzing this information from an occupational perspective can help us to understand the social implications of this unprecedented disruption. In this study, using a COVID-19-related dataset collected with the Twitter IDs, we conduct topic and sentiment analysis from the perspective of occupation, by leveraging Latent Dirichlet Allocation (LDA) topic modeling and Valence Aware Dictionary and sEntiment Reasoning (VADER) model, respectively. The experimental results indicate that there are significant topic preference differences between Twitter users with different occupations. However, occupation-linked affective differences are only partly demonstrated in our study; Twitter users with different income levels have nothing to do with sentiment expression on covid-19-related topics.

Abstract Image

Abstract Image

Abstract Image

探索推特上对COVID-19大流行反应的职业差异
社交媒体上充斥着与2019冠状病毒病(COVID-19)大流行相关的信息,从职业角度分析这些信息可以帮助我们理解这一前所未有的破坏的社会影响。在本研究中,我们使用Twitter id收集的covid -19相关数据集,分别利用Latent Dirichlet Allocation (LDA)主题建模和Valence Aware Dictionary and sentiment Reasoning (VADER)模型,从职业的角度进行话题和情感分析。实验结果表明,不同职业的Twitter用户在话题偏好上存在显著差异。然而,在我们的研究中,职业相关的情感差异只是部分地被证明;不同收入水平的推特用户对新冠肺炎相关话题的情绪表达没有任何关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data and information management
Data and information management Management Information Systems, Library and Information Sciences
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信