{"title":"Classification of BCI Multiclass Motor Imagery Task Based on Artificial Neural Network.","authors":"Amira Echtioui, Wassim Zouch, Mohamed Ghorbel, Chokri Mhiri, Habib Hamam","doi":"10.1177/15500594221148285","DOIUrl":null,"url":null,"abstract":"<p><p>Motor imagery (MI) signals recorded by electroencephalography provide the most practical basis for conceiving brain-computer interfaces (BCI). These interfaces offer a high degree of freedom. This helps people with motor disabilities communicate with the device by tackling a sequence of motor imagery tasks. However, the extracting user-specific features and increasing the accuracy of the classifier remain as difficult tasks in MI-based BCI. In this work, we propose a new method using artificial neural network (ANN) enhancing the performance of the motor imagery classification. Feature extraction techniques, like time domain parameters, band power features, signal power features, and wavelet packet decomposition (WPD), are studied and compared. Four classification algorithms are implemented which are Quadratic Discriminant Analysis, k-Nearest Neighbors, Linear Discriminant Analysis, and proposed ANN architecture. We added Batch Normalization layers to the proposed ANN architecture to improve the learning time and accuracy of the neural network. These layers also alleviate the effect of weight initialization and the addition of a regularization effect on the network. Our proposed method using ANN architecture achieves 0.5545 of kappa and 58.42% of accuracy on the BCI Competition IV-2a dataset. Our results show that the modified ANN method, with frequency and spatial features extracted by WPD and Common Spatial Pattern, respectively, offers a better classification compared to other current methods.</p>","PeriodicalId":10682,"journal":{"name":"Clinical EEG and Neuroscience","volume":" ","pages":"455-464"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical EEG and Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15500594221148285","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Motor imagery (MI) signals recorded by electroencephalography provide the most practical basis for conceiving brain-computer interfaces (BCI). These interfaces offer a high degree of freedom. This helps people with motor disabilities communicate with the device by tackling a sequence of motor imagery tasks. However, the extracting user-specific features and increasing the accuracy of the classifier remain as difficult tasks in MI-based BCI. In this work, we propose a new method using artificial neural network (ANN) enhancing the performance of the motor imagery classification. Feature extraction techniques, like time domain parameters, band power features, signal power features, and wavelet packet decomposition (WPD), are studied and compared. Four classification algorithms are implemented which are Quadratic Discriminant Analysis, k-Nearest Neighbors, Linear Discriminant Analysis, and proposed ANN architecture. We added Batch Normalization layers to the proposed ANN architecture to improve the learning time and accuracy of the neural network. These layers also alleviate the effect of weight initialization and the addition of a regularization effect on the network. Our proposed method using ANN architecture achieves 0.5545 of kappa and 58.42% of accuracy on the BCI Competition IV-2a dataset. Our results show that the modified ANN method, with frequency and spatial features extracted by WPD and Common Spatial Pattern, respectively, offers a better classification compared to other current methods.
脑电图记录的运动图像(MI)信号为构思脑机接口(BCI)提供了最实用的基础。这些接口具有很高的自由度。这有助于运动障碍患者通过完成一系列运动图像任务与设备进行交流。然而,在基于 MI 的 BCI 中,提取用户特定特征和提高分类器的准确性仍然是一项艰巨的任务。在这项工作中,我们提出了一种使用人工神经网络(ANN)提高运动图像分类性能的新方法。我们对时域参数、频带功率特征、信号功率特征和小波包分解(WPD)等特征提取技术进行了研究和比较。我们采用了四种分类算法,分别是二次判别分析、k-近邻分析、线性判别分析和拟议的 ANN 架构。我们在拟议的 ANN 架构中添加了批量归一化层,以改进神经网络的学习时间和准确性。这些层还减轻了权重初始化的影响,并增加了对网络的正则化效应。在 BCI Competition IV-2a 数据集上,我们提出的使用 ANN 架构的方法实现了 0.5545 的卡帕值和 58.42% 的准确率。我们的结果表明,与其他现有方法相比,使用分别由 WPD 和 Common Spatial Pattern 提取的频率和空间特征的改进型 ANN 方法能提供更好的分类效果。
期刊介绍:
Clinical EEG and Neuroscience conveys clinically relevant research and development in electroencephalography and neuroscience. Original articles on any aspect of clinical neurophysiology or related work in allied fields are invited for publication.