Vinay Kumar Bari, Dharmendra Singh, Jackline Abu Nassar, Radi Aly
{"title":"Silencing of a mannitol transport gene in <i>Phelipanche aegyptiaca</i> by the tobacco rattle virus system reduces the parasite germination on the host root.","authors":"Vinay Kumar Bari, Dharmendra Singh, Jackline Abu Nassar, Radi Aly","doi":"10.1080/15592324.2022.2139115","DOIUrl":null,"url":null,"abstract":"<p><p>Root parasitic weed <i>Phelipanche aegyptiaca</i> is an obligate plant parasite that causes severe damage to host crops. Agriculture crops mainly belong to the Brassicaceae, Leguminosae, Cruciferae, and Solanaceae plant families affected by this parasitic weed, leading to the devastating loss of crop yield and economic growth. This root-specific parasitic plant is not able to complete its life cycle without a suitable host and is dependent on the host plant for nutrient uptake and germination. Therefore, selected parasitic genes of <i>P. aegyptiaca</i> which were known to be upregulated upon interaction with the host were chosen. These genes are essential for parasitism, and reduced activity of these genes could affect host-parasitic interaction and provide resistance to the host against these parasitic weeds. To check and examine the role of these parasitic genes which can affect the development of host resistance, we silenced selected genes in the <i>P. aegyptiaca</i> using the tobacco rattle virus (TRV) based virus-induced gene silencing (VIGS) method. Our results demonstrated that the total number of <i>P. aegyptiaca</i> parasite tubercles attached to the root of the host plant <i>Nicotiana benthamiana</i> was substantially decreased in all the silenced plants. However, silencing of the <i>P. aegyptiaca MNT1</i> gene which encodes the mannitol transporter showed a significantly reduced number of germinated shoots and tubercles. Thus, our study indicates that the mannitol transport gene of <i>P. aegyptiaca</i> plays a crucial role in parasitic germination, and silencing of the <i>PaMNT1</i> gene abolishes the germination of parasites on the host roots.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704376/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Signaling & Behavior","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592324.2022.2139115","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Root parasitic weed Phelipanche aegyptiaca is an obligate plant parasite that causes severe damage to host crops. Agriculture crops mainly belong to the Brassicaceae, Leguminosae, Cruciferae, and Solanaceae plant families affected by this parasitic weed, leading to the devastating loss of crop yield and economic growth. This root-specific parasitic plant is not able to complete its life cycle without a suitable host and is dependent on the host plant for nutrient uptake and germination. Therefore, selected parasitic genes of P. aegyptiaca which were known to be upregulated upon interaction with the host were chosen. These genes are essential for parasitism, and reduced activity of these genes could affect host-parasitic interaction and provide resistance to the host against these parasitic weeds. To check and examine the role of these parasitic genes which can affect the development of host resistance, we silenced selected genes in the P. aegyptiaca using the tobacco rattle virus (TRV) based virus-induced gene silencing (VIGS) method. Our results demonstrated that the total number of P. aegyptiaca parasite tubercles attached to the root of the host plant Nicotiana benthamiana was substantially decreased in all the silenced plants. However, silencing of the P. aegyptiaca MNT1 gene which encodes the mannitol transporter showed a significantly reduced number of germinated shoots and tubercles. Thus, our study indicates that the mannitol transport gene of P. aegyptiaca plays a crucial role in parasitic germination, and silencing of the PaMNT1 gene abolishes the germination of parasites on the host roots.
期刊介绍:
Plant Signaling & Behavior, a multidisciplinary peer-reviewed journal published monthly online, publishes original research articles and reviews covering the latest aspects of signal perception and transduction, integrative plant physiology, and information acquisition and processing.