Daming Zhao, Yiqing Wang, Chung-Li Dong, Fanqi Meng, Yu-Cheng Huang, Qinghua Zhang, Lin Gu, Lan Liu, Shaohua Shen
{"title":"Electron-Deficient Zn-N6 Configuration Enabling Polymeric Carbon Nitride for Visible-Light Photocatalytic Overall Water Splitting","authors":"Daming Zhao, Yiqing Wang, Chung-Li Dong, Fanqi Meng, Yu-Cheng Huang, Qinghua Zhang, Lin Gu, Lan Liu, Shaohua Shen","doi":"10.1007/s40820-022-00962-x","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n \n <ul>\n <li>\n <p>Atomically dispersed Zn-anchored 3D sponge-like polymeric carbon nitride (Zn-PCN) characteristic of a unique Zn-N<sub>6</sub> electron-deficient configuration is synthesized via an intermediate coordination strategy.</p>\n </li>\n <li>\n <p>The electron-deficient Zn-N<sub>6</sub> configuration contributes to enhanced electron excitation, accelerated charge separation and transfer as well as reduced overpotentials of water redox reactions.</p>\n </li>\n <li>\n <p>The obtained Zn-PCN realizes photocatalytic overall water splitting to stoichiometrically produce H<sub>2</sub> and O<sub>2</sub> with good durability under visible light.</p>\n </li>\n </ul>\n \n </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"14 1","pages":""},"PeriodicalIF":31.6000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663795/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-022-00962-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Highlights
Atomically dispersed Zn-anchored 3D sponge-like polymeric carbon nitride (Zn-PCN) characteristic of a unique Zn-N6 electron-deficient configuration is synthesized via an intermediate coordination strategy.
The electron-deficient Zn-N6 configuration contributes to enhanced electron excitation, accelerated charge separation and transfer as well as reduced overpotentials of water redox reactions.
The obtained Zn-PCN realizes photocatalytic overall water splitting to stoichiometrically produce H2 and O2 with good durability under visible light.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.