{"title":"Risk Analysis via Generalized Pareto Distributions.","authors":"Y I He, Liang Peng, Dabao Zhang, Zifeng Zhao","doi":"10.1080/07350015.2021.1874390","DOIUrl":null,"url":null,"abstract":"<p><p>We compute the value-at-risk of financial losses by fitting a generalized Pareto distribution to exceedances over a threshold. Following the common practice of setting the threshold as high sample quantiles, we show that, for both independent observations and time-series data, the asymptotic variance for the maximum likelihood estimation depends on the choice of threshold, unlike the existing study of using a divergent threshold. We also propose a random weighted bootstrap method for the interval estimation of VaR, with critical values computed by the empirical distribution of the absolute differences between the bootstrapped estimators and the maximum likelihood estimator. While our asymptotic results unify the inference with non-divergent and divergent thresholds, the finite sample studies via simulation and application to real data show that the derived confidence intervals well cover the true VaR in insurance and finance.</p>","PeriodicalId":50247,"journal":{"name":"Journal of Business & Economic Statistics","volume":"40 2","pages":"852-867"},"PeriodicalIF":2.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07350015.2021.1874390","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2021.1874390","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 5
Abstract
We compute the value-at-risk of financial losses by fitting a generalized Pareto distribution to exceedances over a threshold. Following the common practice of setting the threshold as high sample quantiles, we show that, for both independent observations and time-series data, the asymptotic variance for the maximum likelihood estimation depends on the choice of threshold, unlike the existing study of using a divergent threshold. We also propose a random weighted bootstrap method for the interval estimation of VaR, with critical values computed by the empirical distribution of the absolute differences between the bootstrapped estimators and the maximum likelihood estimator. While our asymptotic results unify the inference with non-divergent and divergent thresholds, the finite sample studies via simulation and application to real data show that the derived confidence intervals well cover the true VaR in insurance and finance.
期刊介绍:
The Journal of Business and Economic Statistics (JBES) publishes a range of articles, primarily applied statistical analyses of microeconomic, macroeconomic, forecasting, business, and finance related topics. More general papers in statistics, econometrics, computation, simulation, or graphics are also appropriate if they are immediately applicable to the journal''s general topics of interest. Articles published in JBES contain significant results, high-quality methodological content, excellent exposition, and usually include a substantive empirical application.