Risk Analysis via Generalized Pareto Distributions.

IF 2.9 2区 数学 Q1 ECONOMICS
Y I He, Liang Peng, Dabao Zhang, Zifeng Zhao
{"title":"Risk Analysis via Generalized Pareto Distributions.","authors":"Y I He,&nbsp;Liang Peng,&nbsp;Dabao Zhang,&nbsp;Zifeng Zhao","doi":"10.1080/07350015.2021.1874390","DOIUrl":null,"url":null,"abstract":"<p><p>We compute the value-at-risk of financial losses by fitting a generalized Pareto distribution to exceedances over a threshold. Following the common practice of setting the threshold as high sample quantiles, we show that, for both independent observations and time-series data, the asymptotic variance for the maximum likelihood estimation depends on the choice of threshold, unlike the existing study of using a divergent threshold. We also propose a random weighted bootstrap method for the interval estimation of VaR, with critical values computed by the empirical distribution of the absolute differences between the bootstrapped estimators and the maximum likelihood estimator. While our asymptotic results unify the inference with non-divergent and divergent thresholds, the finite sample studies via simulation and application to real data show that the derived confidence intervals well cover the true VaR in insurance and finance.</p>","PeriodicalId":50247,"journal":{"name":"Journal of Business & Economic Statistics","volume":"40 2","pages":"852-867"},"PeriodicalIF":2.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07350015.2021.1874390","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2021.1874390","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 5

Abstract

We compute the value-at-risk of financial losses by fitting a generalized Pareto distribution to exceedances over a threshold. Following the common practice of setting the threshold as high sample quantiles, we show that, for both independent observations and time-series data, the asymptotic variance for the maximum likelihood estimation depends on the choice of threshold, unlike the existing study of using a divergent threshold. We also propose a random weighted bootstrap method for the interval estimation of VaR, with critical values computed by the empirical distribution of the absolute differences between the bootstrapped estimators and the maximum likelihood estimator. While our asymptotic results unify the inference with non-divergent and divergent thresholds, the finite sample studies via simulation and application to real data show that the derived confidence intervals well cover the true VaR in insurance and finance.

Abstract Image

基于广义Pareto分布的风险分析。
我们通过将广义帕累托分布拟合到超过阈值的情况来计算金融损失的风险价值。根据将阈值设置为高样本分位数的常见做法,我们表明,对于独立观测和时间序列数据,最大似然估计的渐近方差取决于阈值的选择,与使用发散阈值的现有研究不同。我们还提出了VaR区间估计的随机加权自举方法,其临界值由自举估计量与极大似然估计量之间的绝对差的经验分布计算。虽然我们的渐近结果统一了非发散阈值和发散阈值的推断,但通过模拟和应用于实际数据的有限样本研究表明,推导出的置信区间很好地覆盖了保险和金融中的真实VaR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Business & Economic Statistics
Journal of Business & Economic Statistics 数学-统计学与概率论
CiteScore
5.00
自引率
6.70%
发文量
98
审稿时长
>12 weeks
期刊介绍: The Journal of Business and Economic Statistics (JBES) publishes a range of articles, primarily applied statistical analyses of microeconomic, macroeconomic, forecasting, business, and finance related topics. More general papers in statistics, econometrics, computation, simulation, or graphics are also appropriate if they are immediately applicable to the journal''s general topics of interest. Articles published in JBES contain significant results, high-quality methodological content, excellent exposition, and usually include a substantive empirical application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信