Leeban H Yusuf, Venera Tyukmaeva, Anneli Hoikkala, Michael G Ritchie
{"title":"Divergence and introgression among the <i>virilis</i> group of <i>Drosophila</i>.","authors":"Leeban H Yusuf, Venera Tyukmaeva, Anneli Hoikkala, Michael G Ritchie","doi":"10.1002/evl3.301","DOIUrl":null,"url":null,"abstract":"<p><p>Speciation with gene flow is now widely regarded as common. However, the frequency of introgression between recently diverged species and the evolutionary consequences of gene flow are still poorly understood. The <i>virilis</i> group of <i>Drosophila</i> contains 12 species that are geographically widespread and show varying levels of prezygotic and postzygotic isolation. Here, we use de novo genome assemblies and whole-genome sequencing data to resolve phylogenetic relationships and describe patterns of introgression and divergence across the group. We suggest that the <i>virilis</i> group consists of three, rather than the traditional two, subgroups. Some genes undergoing rapid sequence divergence across the group were involved in chemical communication and desiccation tolerance, and may be related to the evolution of sexual isolation and adaptation. We found evidence of pervasive phylogenetic discordance caused by ancient introgression events between distant lineages within the group, and more recent gene flow between closely related species. When assessing patterns of genome-wide divergence in species pairs across the group, we found no consistent genomic evidence of a disproportionate role for the X chromosome as has been found in other systems. Our results show how ancient and recent introgressions confuse phylogenetic reconstruction, but may play an important role during early radiation of a group.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"6 6","pages":"537-551"},"PeriodicalIF":3.4000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783487/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/evl3.301","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Speciation with gene flow is now widely regarded as common. However, the frequency of introgression between recently diverged species and the evolutionary consequences of gene flow are still poorly understood. The virilis group of Drosophila contains 12 species that are geographically widespread and show varying levels of prezygotic and postzygotic isolation. Here, we use de novo genome assemblies and whole-genome sequencing data to resolve phylogenetic relationships and describe patterns of introgression and divergence across the group. We suggest that the virilis group consists of three, rather than the traditional two, subgroups. Some genes undergoing rapid sequence divergence across the group were involved in chemical communication and desiccation tolerance, and may be related to the evolution of sexual isolation and adaptation. We found evidence of pervasive phylogenetic discordance caused by ancient introgression events between distant lineages within the group, and more recent gene flow between closely related species. When assessing patterns of genome-wide divergence in species pairs across the group, we found no consistent genomic evidence of a disproportionate role for the X chromosome as has been found in other systems. Our results show how ancient and recent introgressions confuse phylogenetic reconstruction, but may play an important role during early radiation of a group.
期刊介绍:
Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology.
Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.