John C Chin, Christopher D Maroules, Andrew H Lin, Rolf E Graning, Cullen R Pressley
{"title":"Reporting Coronary Artery Calcium on Low-Dose Computed Tomography Impacts Statin Management in a Lung Cancer Screening Population.","authors":"John C Chin, Christopher D Maroules, Andrew H Lin, Rolf E Graning, Cullen R Pressley","doi":"10.12788/fp.0318","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cigarette smoking is an independent risk factor for atherosclerotic cardiovascular disease (ASCVD). Concomitant use of low-dose computed tomography (LDCT) for coronary artery calcium (CAC) scoring with lung cancer screening (LCS) has been proposed to further determine ASCVD risk and mortality. We aimed to determine the validity of LDCT in identifying CAC and its impact on statin management.</p><p><strong>Methods: </strong>We conducted a retrospective review from November 2020 to May 2021 of Military Health System (MHS) beneficiaries who received LCS with LDCT and were referred for CAC scoring with electrocardiogram-gated CT. Of the 190 participants initially identified, 170 met study eligibility. The Agatston method was used to score CAC on both scan types.</p><p><strong>Results: </strong>Participants had a mean (SD) age of 62.1 (4.6) years and were 70.6% male. CAC was seen more on ECG-gated CT compared with LDCT (88% vs 74%, <i>P</i> < .001). The Spearman correlation and Kendall W coefficient of concordance of CAC scores between the 2 scan types was 0.945 (<i>P</i> < .001) and 0.643, respectively. The κ statistic between CAC scores on the 2 different scans was 0.49 (SEκ = 0.048; 95% CI, -0.726-1.706), and the weighted κ statistic was 0.711. Bland-Altman analysis demonstrated a mean bias of 111.45 Agatston units, with limits of agreement between -268.64 and 491.54, suggesting CAC scores on electrocardiogram-gated CT were on average about 111 units higher than those on LDCT. There was a statistically significant proportion of nonstatin participants who met statin criteria based on additional CAC reporting (<i>P</i> < .001).</p><p><strong>Conclusions: </strong>CAC scores are highly correlated and concordant between LDCT and electrocardiogram-gated CT. Smokers undergoing annual LDCT may benefit from concomitant CAC scoring to help stratify ASCVD risk.</p>","PeriodicalId":73021,"journal":{"name":"Federal practitioner : for the health care professionals of the VA, DoD, and PHS","volume":"39 9","pages":"382-388"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9794164/pdf/fp-39-09-382.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Federal practitioner : for the health care professionals of the VA, DoD, and PHS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12788/fp.0318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cigarette smoking is an independent risk factor for atherosclerotic cardiovascular disease (ASCVD). Concomitant use of low-dose computed tomography (LDCT) for coronary artery calcium (CAC) scoring with lung cancer screening (LCS) has been proposed to further determine ASCVD risk and mortality. We aimed to determine the validity of LDCT in identifying CAC and its impact on statin management.
Methods: We conducted a retrospective review from November 2020 to May 2021 of Military Health System (MHS) beneficiaries who received LCS with LDCT and were referred for CAC scoring with electrocardiogram-gated CT. Of the 190 participants initially identified, 170 met study eligibility. The Agatston method was used to score CAC on both scan types.
Results: Participants had a mean (SD) age of 62.1 (4.6) years and were 70.6% male. CAC was seen more on ECG-gated CT compared with LDCT (88% vs 74%, P < .001). The Spearman correlation and Kendall W coefficient of concordance of CAC scores between the 2 scan types was 0.945 (P < .001) and 0.643, respectively. The κ statistic between CAC scores on the 2 different scans was 0.49 (SEκ = 0.048; 95% CI, -0.726-1.706), and the weighted κ statistic was 0.711. Bland-Altman analysis demonstrated a mean bias of 111.45 Agatston units, with limits of agreement between -268.64 and 491.54, suggesting CAC scores on electrocardiogram-gated CT were on average about 111 units higher than those on LDCT. There was a statistically significant proportion of nonstatin participants who met statin criteria based on additional CAC reporting (P < .001).
Conclusions: CAC scores are highly correlated and concordant between LDCT and electrocardiogram-gated CT. Smokers undergoing annual LDCT may benefit from concomitant CAC scoring to help stratify ASCVD risk.