A meta-analysis of tissue microbial biomarkers for recurrence and metastasis in multiple cancer types.

IF 2.4 4区 医学 Q3 MICROBIOLOGY
Xuebo Li, Xuelian Yuan, Xiumin Zhu, Changjun Li, Lei Ji, Kebo Lv, Geng Tian, Kang Ning, Jialiang Yang
{"title":"A meta-analysis of tissue microbial biomarkers for recurrence and metastasis in multiple cancer types.","authors":"Xuebo Li,&nbsp;Xuelian Yuan,&nbsp;Xiumin Zhu,&nbsp;Changjun Li,&nbsp;Lei Ji,&nbsp;Kebo Lv,&nbsp;Geng Tian,&nbsp;Kang Ning,&nbsp;Jialiang Yang","doi":"10.1099/jmm.0.001744","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background.</b> Local recurrence and distant metastasis are the main causes of death in patients with cancer. Only considering species abundance changes when identifying markers of recurrence and metastasis in patients hinders finding solutions.<b>Hypothesis.</b> Consideration of microbial abundance changes and microbial interactions facilitates the identification of microbial markers of tumour recurrence and metastasis.<b>Aim.</b> This study aims to simultaneously consider microbial abundance changes and microbial interactions to identify microbial markers of recurrence and metastasis in multiple cancer types.<b>Method.</b> One thousand one hundred and six non-RM (patients without recurrence and metastasis within 3 years after initial surgery) tissue samples and 912 RM (patients with recurrence or metastasis within 3 years after initial surgery) tissue samples representing 11 cancer types were collected from The Cancer Genome Atlas (TCGA).<b>Results.</b> Tumour tissue bacterial composition differed significantly among 11 cancers. Among them, the tissue microbiome of four cancers, head and neck squamous cell carcinoma (HNSC), lung squamous cell carcinoma (LUSC), stomach adenocarcinoma (STAD) and uterine corpus endometrial carcinoma (UCEC), showed relatively good performance in predicting recurrence and metastasis in patients, with areas under the receiver operating characteristic curve (AUCs) of 0.78, 0.74, 0.91 and 0.93, respectively. Considering both species abundance changes and microbial interactions for the four cancers, a combination of nine genera (<i>Niastella</i>, <i>Schlesneria</i>, <i>Thioalkalivibrio</i>, <i>Phaeobacter</i>, <i>Sphaerotilus</i>, <i>Thiomonas</i>, <i>Lawsonia</i>, <i>Actinobacillus</i> and <i>Spiroplasma</i>) performed best in predicting patient survival.<b>Conclusion.</b> Taken together, our results imply that comprehensive consideration of microbial abundance changes and microbial interactions is helpful for mining bacterial markers that carry prognostic information.</p>","PeriodicalId":16343,"journal":{"name":"Journal of medical microbiology","volume":"72 8","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1099/jmm.0.001744","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background. Local recurrence and distant metastasis are the main causes of death in patients with cancer. Only considering species abundance changes when identifying markers of recurrence and metastasis in patients hinders finding solutions.Hypothesis. Consideration of microbial abundance changes and microbial interactions facilitates the identification of microbial markers of tumour recurrence and metastasis.Aim. This study aims to simultaneously consider microbial abundance changes and microbial interactions to identify microbial markers of recurrence and metastasis in multiple cancer types.Method. One thousand one hundred and six non-RM (patients without recurrence and metastasis within 3 years after initial surgery) tissue samples and 912 RM (patients with recurrence or metastasis within 3 years after initial surgery) tissue samples representing 11 cancer types were collected from The Cancer Genome Atlas (TCGA).Results. Tumour tissue bacterial composition differed significantly among 11 cancers. Among them, the tissue microbiome of four cancers, head and neck squamous cell carcinoma (HNSC), lung squamous cell carcinoma (LUSC), stomach adenocarcinoma (STAD) and uterine corpus endometrial carcinoma (UCEC), showed relatively good performance in predicting recurrence and metastasis in patients, with areas under the receiver operating characteristic curve (AUCs) of 0.78, 0.74, 0.91 and 0.93, respectively. Considering both species abundance changes and microbial interactions for the four cancers, a combination of nine genera (Niastella, Schlesneria, Thioalkalivibrio, Phaeobacter, Sphaerotilus, Thiomonas, Lawsonia, Actinobacillus and Spiroplasma) performed best in predicting patient survival.Conclusion. Taken together, our results imply that comprehensive consideration of microbial abundance changes and microbial interactions is helpful for mining bacterial markers that carry prognostic information.

多种癌症复发和转移的组织微生物生物标志物荟萃分析。
背景。局部复发和远处转移是肿瘤患者死亡的主要原因。在确定患者复发和转移的标志物时,只考虑物种丰度的变化会阻碍找到解决方案。考虑微生物丰度变化和微生物相互作用有助于确定肿瘤复发和转移的微生物标志物。本研究旨在同时考虑微生物丰度变化和微生物相互作用,以确定多种癌症复发和转移的微生物标志物。从癌症基因组图谱(TCGA)中收集了11种癌症类型的1106例非RM(术后3年内无复发转移患者)组织样本和912例RM(术后3年内复发转移患者)组织样本。肿瘤组织细菌组成在11种癌症中有显著差异。其中,头颈部鳞状细胞癌(HNSC)、肺鳞状细胞癌(LUSC)、胃腺癌(STAD)和子宫肌体子宫内膜癌(UCEC) 4种癌症的组织微生物组在预测患者复发和转移方面表现较好,患者工作特征曲线下面积(aus)分别为0.78、0.74、0.91和0.93。考虑到4种癌症的物种丰度变化和微生物相互作用,9个属(Niastella、Schlesneria、thiioalalivibrio、Phaeobacter、Sphaerotilus、Thiomonas、Lawsonia、Actinobacillus和Spiroplasma)的组合预测患者生存最好。综上所述,我们的结果表明,综合考虑微生物丰度变化和微生物相互作用有助于挖掘携带预后信息的细菌标记物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of medical microbiology
Journal of medical microbiology 医学-微生物学
CiteScore
5.50
自引率
3.30%
发文量
143
审稿时长
4.5 months
期刊介绍: Journal of Medical Microbiology provides comprehensive coverage of medical, dental and veterinary microbiology, and infectious diseases. We welcome everything from laboratory research to clinical trials, including bacteriology, virology, mycology and parasitology. We publish articles under the following subject categories: Antimicrobial resistance; Clinical microbiology; Disease, diagnosis and diagnostics; Medical mycology; Molecular and microbial epidemiology; Microbiome and microbial ecology in health; One Health; Pathogenesis, virulence and host response; Prevention, therapy and therapeutics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信