{"title":"Photosynthetic electron transport rate and root dynamics of finger millet in response to <i>Trichoderma harzianum</i>.","authors":"Ramwant Gupta, Munna Singh, Bibi Rafeiza Khan","doi":"10.1080/15592324.2022.2146373","DOIUrl":null,"url":null,"abstract":"<p><p>Finger millet (ragi) is the main food grain for many people, especially in the arid and semiarid regions of developing countries in Asia and Africa. The grains contain an exceptionally higher amount of Ca (>300 mg/100 g) when compared to other major cereals. For sustainable production of ragi in the current scenario of climate change, this study aimed to evaluate the impact of <i>Trichoderma harzianum</i> (TRI) on ragi performance. The performance of photosynthetic pigment pool, photosynthetic apparatus, and root dynamics of three varieties of ragi (PRM-1, PRM-701, and PRM-801) in response to four treatments <i>viz</i>., C (soil), S+ TRI (soil + <i>Trichoderma</i>), farmyard manure (soil+ FYM), and FYM+TRI (Soil + FYM + <i>Trichoderma</i>) were studied. Results have shown a significant increase in the photosynthetic pigment pool and optimized functional and structural integrity of the photosynthetic apparatus in response to the combination of farmyard manure (FYM) with TRI. Higher yield parameters <i>viz</i>., φ(Po) and φ(Eo), δ(Ro), efficiency ψ(Eo), performance indices - PI<sub>abs</sub> and PI<sub>total</sub>, and enhanced root canopy and biomass were observed in all three varieties. Improved electron transport from PSII to PSI, root canopy and biomass, may also suitably favor biological carbon sequestration to retain soil health and plant productivity in case grown in association with FYM and TRI.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673954/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Signaling & Behavior","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592324.2022.2146373","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Finger millet (ragi) is the main food grain for many people, especially in the arid and semiarid regions of developing countries in Asia and Africa. The grains contain an exceptionally higher amount of Ca (>300 mg/100 g) when compared to other major cereals. For sustainable production of ragi in the current scenario of climate change, this study aimed to evaluate the impact of Trichoderma harzianum (TRI) on ragi performance. The performance of photosynthetic pigment pool, photosynthetic apparatus, and root dynamics of three varieties of ragi (PRM-1, PRM-701, and PRM-801) in response to four treatments viz., C (soil), S+ TRI (soil + Trichoderma), farmyard manure (soil+ FYM), and FYM+TRI (Soil + FYM + Trichoderma) were studied. Results have shown a significant increase in the photosynthetic pigment pool and optimized functional and structural integrity of the photosynthetic apparatus in response to the combination of farmyard manure (FYM) with TRI. Higher yield parameters viz., φ(Po) and φ(Eo), δ(Ro), efficiency ψ(Eo), performance indices - PIabs and PItotal, and enhanced root canopy and biomass were observed in all three varieties. Improved electron transport from PSII to PSI, root canopy and biomass, may also suitably favor biological carbon sequestration to retain soil health and plant productivity in case grown in association with FYM and TRI.
期刊介绍:
Plant Signaling & Behavior, a multidisciplinary peer-reviewed journal published monthly online, publishes original research articles and reviews covering the latest aspects of signal perception and transduction, integrative plant physiology, and information acquisition and processing.