Organoids

IF 56 Q1 MULTIDISCIPLINARY SCIENCES
Zixuan Zhao, Xinyi Chen, Anna M. Dowbaj, Aleksandra Sljukic, Kaitlin Bratlie, Luda Lin, Eliza Li Shan Fong, Gowri Manohari Balachander, Zhaowei Chen, Alice Soragni, Meritxell Huch, Yi Arial Zeng, Qun Wang, Hanry Yu
{"title":"Organoids","authors":"Zixuan Zhao, Xinyi Chen, Anna M. Dowbaj, Aleksandra Sljukic, Kaitlin Bratlie, Luda Lin, Eliza Li Shan Fong, Gowri Manohari Balachander, Zhaowei Chen, Alice Soragni, Meritxell Huch, Yi Arial Zeng, Qun Wang, Hanry Yu","doi":"10.1038/s43586-022-00174-y","DOIUrl":null,"url":null,"abstract":"Organoids are simple tissue-engineered cell-based in vitro models that recapitulate many aspects of the complex structure and function of the corresponding in vivo tissue. They can be dissected and interrogated for fundamental mechanistic studies on development, regeneration and repair in human tissues, and can also be used in diagnostics, disease modelling, drug discovery and personalized medicine. Organoids are derived from either pluripotent or tissue-resident stem (embryonic or adult) or progenitor or differentiated cells from healthy or diseased tissues, such as tumours. To date, numerous organoid engineering strategies that support organoid culture and growth, proliferation, differentiation and maturation have been reported. This Primer highlights the rationale underlying the selection and development of these materials and methods to control the cellular/tissue niche; and therefore, the structure and function of the engineered organoid. We also discuss key considerations for generating robust organoids, such as those related to cell isolation and seeding, matrix and soluble factor selection, physical cues and integration. The general standards for data quality, reproducibility and deposition within the organoid community are also outlined. Lastly, we conclude by elaborating on the limitations of organoids in different applications, and the key priorities in organoid engineering for the coming years. Organoids are cell-based in vitro models derived from stem cells, reconstituting the complex structure and function of the corresponding tissue. In this Primer, Zhao, Chen, Dowbaj, Sljukic, Bratlie, Lin et al. discuss the development of organoids and methods for controlling their cellular environment.","PeriodicalId":74250,"journal":{"name":"Nature reviews. Methods primers","volume":" ","pages":"1-21"},"PeriodicalIF":56.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270325/pdf/nihms-1885619.pdf","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Methods primers","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43586-022-00174-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 52

Abstract

Organoids are simple tissue-engineered cell-based in vitro models that recapitulate many aspects of the complex structure and function of the corresponding in vivo tissue. They can be dissected and interrogated for fundamental mechanistic studies on development, regeneration and repair in human tissues, and can also be used in diagnostics, disease modelling, drug discovery and personalized medicine. Organoids are derived from either pluripotent or tissue-resident stem (embryonic or adult) or progenitor or differentiated cells from healthy or diseased tissues, such as tumours. To date, numerous organoid engineering strategies that support organoid culture and growth, proliferation, differentiation and maturation have been reported. This Primer highlights the rationale underlying the selection and development of these materials and methods to control the cellular/tissue niche; and therefore, the structure and function of the engineered organoid. We also discuss key considerations for generating robust organoids, such as those related to cell isolation and seeding, matrix and soluble factor selection, physical cues and integration. The general standards for data quality, reproducibility and deposition within the organoid community are also outlined. Lastly, we conclude by elaborating on the limitations of organoids in different applications, and the key priorities in organoid engineering for the coming years. Organoids are cell-based in vitro models derived from stem cells, reconstituting the complex structure and function of the corresponding tissue. In this Primer, Zhao, Chen, Dowbaj, Sljukic, Bratlie, Lin et al. discuss the development of organoids and methods for controlling their cellular environment.

Abstract Image

类有机物。
有机体是一种基于细胞的简单组织工程体外模型,能在许多方面再现相应体内组织的复杂结构和功能。可以对它们进行解剖和检测,以对人体组织的发育、再生和修复进行基础机理研究,还可用于诊断、疾病建模、药物发现和个性化医疗。类器官来源于多能或组织驻留干细胞(胚胎或成人),或来自健康或患病组织(如肿瘤)的祖细胞或分化细胞。迄今为止,已有许多支持类器官培养、生长、增殖、分化和成熟的类器官工程策略被报道。本手册重点介绍了选择和开发这些材料和方法的基本原理,这些材料和方法可控制细胞/组织龛,从而控制工程类器官的结构和功能。我们还讨论了生成强健类器官的关键注意事项,如细胞分离和播种、基质和可溶性因子选择、物理线索和整合等。此外,我们还概述了类器官社区内数据质量、可重复性和沉积的一般标准。最后,我们阐述了类器官在不同应用中的局限性,以及未来几年类器官工程的重点。类器官是以细胞为基础的体外模型,源自干细胞,能重建相应组织的复杂结构和功能。在这本《入门》中,Zhao、Chen、Dowbaj、Sljukic、Bratlie、Lin 等人讨论了类器官的发展及其细胞环境的控制方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
46.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信