Qi Di, Yi Li, Danping Zhang, Wei Wu, Lin Zhang, Xing Zhao, Li Luo, Liangliang Yu
{"title":"A novel type of phytosulfokine, PSK-ε, positively regulates root elongation and formation of lateral roots and root nodules in <i>Medicago truncatula</i>.","authors":"Qi Di, Yi Li, Danping Zhang, Wei Wu, Lin Zhang, Xing Zhao, Li Luo, Liangliang Yu","doi":"10.1080/15592324.2022.2134672","DOIUrl":null,"url":null,"abstract":"<p><p>Phytosulfokines (PSKs) are a class of tyrosine-sulfated pentapeptides. PSK-α, PSK-γ, and PSK-δ are three reported PSK members involved in regulating plant growth, development, and resistance to biotic and abiotic stresses. Here, we reported a novel type of PSK, PSK-ε with the sequence Y<sub>SO3</sub>VY<sub>SO3</sub>TN, and its precursor proteins (MtPSKε, LjPSKε, and GmPSKε), specifically from legume species. PSK-ε peptide differs from PSK-δ by one amino acid and is close to PSK-δ in the phylogenetic relationship. Expression profile analysis showed that <i>MtPSKε</i> was highly expressed in <i>Medicago truncatula</i> roots, especially in root tips and emerged lateral roots. Application of the synthetic sulfated PSK-ε peptide and overexpression of <i>MtPSKε</i> significantly promoted <i>M. truncatula</i> root elongation and increased lateral root number, probably by inducing cell division and expansion in roots. Furthermore, <i>MtPSKε</i> expression was induced by rhizobia infection and was detected in root nodules including nodule primordia. Both PSK-ε peptide treatment and <i>MtPSKε</i> overexpression significantly increased nodule number in <i>M. truncatula</i>. Taken together, these results demonstrate that PSK-ε, a novel type of phytosulfokine, positively regulates root elongation and formation of lateral root and root nodule in <i>M. truncatula</i>.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"17 1","pages":"2134672"},"PeriodicalIF":2.8000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9662189/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Signaling & Behavior","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592324.2022.2134672","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Phytosulfokines (PSKs) are a class of tyrosine-sulfated pentapeptides. PSK-α, PSK-γ, and PSK-δ are three reported PSK members involved in regulating plant growth, development, and resistance to biotic and abiotic stresses. Here, we reported a novel type of PSK, PSK-ε with the sequence YSO3VYSO3TN, and its precursor proteins (MtPSKε, LjPSKε, and GmPSKε), specifically from legume species. PSK-ε peptide differs from PSK-δ by one amino acid and is close to PSK-δ in the phylogenetic relationship. Expression profile analysis showed that MtPSKε was highly expressed in Medicago truncatula roots, especially in root tips and emerged lateral roots. Application of the synthetic sulfated PSK-ε peptide and overexpression of MtPSKε significantly promoted M. truncatula root elongation and increased lateral root number, probably by inducing cell division and expansion in roots. Furthermore, MtPSKε expression was induced by rhizobia infection and was detected in root nodules including nodule primordia. Both PSK-ε peptide treatment and MtPSKε overexpression significantly increased nodule number in M. truncatula. Taken together, these results demonstrate that PSK-ε, a novel type of phytosulfokine, positively regulates root elongation and formation of lateral root and root nodule in M. truncatula.
期刊介绍:
Plant Signaling & Behavior, a multidisciplinary peer-reviewed journal published monthly online, publishes original research articles and reviews covering the latest aspects of signal perception and transduction, integrative plant physiology, and information acquisition and processing.