Fine tuning of the transcription juggernaut: A sweet and sour saga of acetylation and ubiquitination

IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Avik Ghosh , Poushali Chakraborty , Debabrata Biswas
{"title":"Fine tuning of the transcription juggernaut: A sweet and sour saga of acetylation and ubiquitination","authors":"Avik Ghosh ,&nbsp;Poushali Chakraborty ,&nbsp;Debabrata Biswas","doi":"10.1016/j.bbagrm.2023.194944","DOIUrl":null,"url":null,"abstract":"<div><p><span>Among post-translational modifications of proteins, acetylation, phosphorylation, and ubiquitination are most extensively studied over the last several decades. Owing to their different target residues for modifications, cross-talk between phosphorylation with that of acetylation and ubiquitination is relatively less pronounced. However, since canonical acetylation and ubiquitination happen only on the lysine residues, an overlap of the same lysine residue being targeted for both acetylation and ubiquitination happens quite frequently and thus plays key roles in overall functional regulation predominantly through modulation of protein stability. In this review, we discuss the cross-talk of acetylation and ubiquitination in the regulation of protein stability for the functional regulation of cellular processes with an emphasis on transcriptional regulation. Further, we emphasize our understanding of the functional regulation of Super Elongation Complex (SEC)-mediated transcription, through regulation of stabilization by acetylation, </span>deacetylation<span> and ubiquitination and associated enzymes and its implication in human diseases.</span></p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1866 3","pages":"Article 194944"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874939923000391","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Among post-translational modifications of proteins, acetylation, phosphorylation, and ubiquitination are most extensively studied over the last several decades. Owing to their different target residues for modifications, cross-talk between phosphorylation with that of acetylation and ubiquitination is relatively less pronounced. However, since canonical acetylation and ubiquitination happen only on the lysine residues, an overlap of the same lysine residue being targeted for both acetylation and ubiquitination happens quite frequently and thus plays key roles in overall functional regulation predominantly through modulation of protein stability. In this review, we discuss the cross-talk of acetylation and ubiquitination in the regulation of protein stability for the functional regulation of cellular processes with an emphasis on transcriptional regulation. Further, we emphasize our understanding of the functional regulation of Super Elongation Complex (SEC)-mediated transcription, through regulation of stabilization by acetylation, deacetylation and ubiquitination and associated enzymes and its implication in human diseases.

转录主宰的微调:乙酰化和泛素化的酸甜传奇
在蛋白质的翻译后修饰中,乙酰化、磷酸化和泛素化在过去几十年中得到了最广泛的研究。由于其修饰的靶残基不同,磷酸化与乙酰化和泛素化之间的串扰相对不那么明显。然而,由于典型的乙酰化和泛素化仅发生在赖氨酸残基上,因此乙酰化和泛素化靶向的同一赖氨酸残余基的重叠非常频繁,因此主要通过调节蛋白质稳定性在整体功能调节中发挥关键作用。在这篇综述中,我们讨论了乙酰化和泛素化在调节蛋白质稳定性以调节细胞过程中的相互作用,重点是转录调节。此外,我们强调我们对超延伸复合物(SEC)介导的转录的功能调节的理解,通过乙酰化、脱乙酰化和泛素化以及相关酶的稳定调节,以及它在人类疾病中的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
2.10%
发文量
63
审稿时长
44 days
期刊介绍: BBA Gene Regulatory Mechanisms includes reports that describe novel insights into mechanisms of transcriptional, post-transcriptional and translational gene regulation. Special emphasis is placed on papers that identify epigenetic mechanisms of gene regulation, including chromatin, modification, and remodeling. This section also encompasses mechanistic studies of regulatory proteins and protein complexes; regulatory or mechanistic aspects of RNA processing; regulation of expression by small RNAs; genomic analysis of gene expression patterns; and modeling of gene regulatory pathways. Papers describing gene promoters, enhancers, silencers or other regulatory DNA regions must incorporate significant functions studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信