Lattice Paths for Persistent Diagrams.

Moo K Chung, Hernando Ombao
{"title":"Lattice Paths for Persistent Diagrams.","authors":"Moo K Chung,&nbsp;Hernando Ombao","doi":"10.1007/978-3-030-87444-5_8","DOIUrl":null,"url":null,"abstract":"<p><p>Persistent homology has undergone significant development in recent years. However, one outstanding challenge is to build a coherent statistical inference procedure on persistent diagrams. In this paper, we first present a new lattice path representation for persistent diagrams. We then develop a new exact statistical inference procedure for lattice paths via combinatorial enumerations. The lattice path method is applied to the topological characterization of the protein structures of the COVID-19 virus. We demonstrate that there are topological changes during the conformational change of spike proteins.</p>","PeriodicalId":73499,"journal":{"name":"Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data : 4th International Workshop, iMIMIC 2021, and 1st International Workshop, TDA4MedicalData 2021, He...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8730383/pdf/nihms-1763408.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data : 4th International Workshop, iMIMIC 2021, and 1st International Workshop, TDA4MedicalData 2021, He...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-87444-5_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Persistent homology has undergone significant development in recent years. However, one outstanding challenge is to build a coherent statistical inference procedure on persistent diagrams. In this paper, we first present a new lattice path representation for persistent diagrams. We then develop a new exact statistical inference procedure for lattice paths via combinatorial enumerations. The lattice path method is applied to the topological characterization of the protein structures of the COVID-19 virus. We demonstrate that there are topological changes during the conformational change of spike proteins.

持久化图的点阵路径。
近年来,持久性同源性研究取得了重大进展。然而,一个突出的挑战是在持久图上构建连贯的统计推断过程。本文首先提出了一种新的持久化图的点阵路径表示方法。然后,我们通过组合枚举开发了一种新的格路径精确统计推理程序。将点阵路径法应用于COVID-19病毒蛋白结构的拓扑表征。我们证明在刺突蛋白的构象变化过程中存在着拓扑结构的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信