Data-driven discovery of canonical large-scale brain dynamics.

Juan Piccinini, Gustavo Deco, Morten Kringelbach, Helmut Laufs, Yonatan Sanz Perl, Enzo Tagliazucchi
{"title":"Data-driven discovery of canonical large-scale brain dynamics.","authors":"Juan Piccinini,&nbsp;Gustavo Deco,&nbsp;Morten Kringelbach,&nbsp;Helmut Laufs,&nbsp;Yonatan Sanz Perl,&nbsp;Enzo Tagliazucchi","doi":"10.1093/texcom/tgac045","DOIUrl":null,"url":null,"abstract":"<p><p>Human behavior and cognitive function correlate with complex patterns of spatio-temporal brain dynamics, which can be simulated using computational models with different degrees of biophysical realism. We used a data-driven optimization algorithm to determine and classify the types of local dynamics that enable the reproduction of different observables derived from functional magnetic resonance recordings. The phase space analysis of the resulting equations revealed a predominance of stable spiral attractors, which optimized the similarity to the empirical data in terms of the synchronization, metastability, and functional connectivity dynamics. For stable limit cycles, departures from harmonic oscillations improved the fit in terms of functional connectivity dynamics. Eigenvalue analyses showed that proximity to a bifurcation improved the accuracy of the simulation for wakefulness, whereas deep sleep was associated with increased stability. Our results provide testable predictions that constrain the landscape of suitable biophysical models, while supporting noise-driven dynamics close to a bifurcation as a canonical mechanism underlying the complex fluctuations that characterize endogenous brain activity.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"3 4","pages":"tgac045"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9721525/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/texcom/tgac045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Human behavior and cognitive function correlate with complex patterns of spatio-temporal brain dynamics, which can be simulated using computational models with different degrees of biophysical realism. We used a data-driven optimization algorithm to determine and classify the types of local dynamics that enable the reproduction of different observables derived from functional magnetic resonance recordings. The phase space analysis of the resulting equations revealed a predominance of stable spiral attractors, which optimized the similarity to the empirical data in terms of the synchronization, metastability, and functional connectivity dynamics. For stable limit cycles, departures from harmonic oscillations improved the fit in terms of functional connectivity dynamics. Eigenvalue analyses showed that proximity to a bifurcation improved the accuracy of the simulation for wakefulness, whereas deep sleep was associated with increased stability. Our results provide testable predictions that constrain the landscape of suitable biophysical models, while supporting noise-driven dynamics close to a bifurcation as a canonical mechanism underlying the complex fluctuations that characterize endogenous brain activity.

Abstract Image

Abstract Image

Abstract Image

数据驱动的典型大规模脑动力学发现。
人类行为和认知功能与复杂的时空大脑动态模式相关,可以使用具有不同程度生物物理真实感的计算模型进行模拟。我们使用数据驱动的优化算法来确定和分类局部动态的类型,从而能够再现来自功能磁共振记录的不同观测值。相空间分析结果表明,稳定的螺旋吸引子占主导地位,从而优化了在同步、亚稳态和功能连通性动力学方面与经验数据的相似性。对于稳定的极限环,偏离谐波振动改善了功能连通性动力学方面的拟合。特征值分析表明,接近分岔提高了清醒状态模拟的准确性,而深度睡眠则增加了稳定性。我们的研究结果提供了可测试的预测,限制了合适的生物物理模型的前景,同时支持接近分岔的噪声驱动动力学作为内源性大脑活动特征复杂波动的典型机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信