Ursula Fels, Patrick Willems, Margaux De Meyer, Kris Gevaert, Petra Van Damme
{"title":"Shift in vacuolar to cytosolic regime of infecting Salmonella from a dual proteome perspective.","authors":"Ursula Fels, Patrick Willems, Margaux De Meyer, Kris Gevaert, Petra Van Damme","doi":"10.1371/journal.ppat.1011183","DOIUrl":null,"url":null,"abstract":"<p><p>By applying dual proteome profiling to Salmonella enterica serovar Typhimurium (S. Typhimurium) encounters with its epithelial host (here, S. Typhimurium infected human HeLa cells), a detailed interdependent and holistic proteomic perspective on host-pathogen interactions over the time course of infection was obtained. Data-independent acquisition (DIA)-based proteomics was found to outperform data-dependent acquisition (DDA) workflows, especially in identifying the downregulated bacterial proteome response during infection progression by permitting quantification of low abundant bacterial proteins at early times of infection when bacterial infection load is low. S. Typhimurium invasion and replication specific proteomic signatures in epithelial cells revealed interdependent host/pathogen specific responses besides pointing to putative novel infection markers and signalling responses, including regulated host proteins associated with Salmonella-modified membranes.</p>","PeriodicalId":20178,"journal":{"name":"PLoS Pathogens","volume":"19 8","pages":"e1011183"},"PeriodicalIF":6.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10426988/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1011183","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
Abstract
By applying dual proteome profiling to Salmonella enterica serovar Typhimurium (S. Typhimurium) encounters with its epithelial host (here, S. Typhimurium infected human HeLa cells), a detailed interdependent and holistic proteomic perspective on host-pathogen interactions over the time course of infection was obtained. Data-independent acquisition (DIA)-based proteomics was found to outperform data-dependent acquisition (DDA) workflows, especially in identifying the downregulated bacterial proteome response during infection progression by permitting quantification of low abundant bacterial proteins at early times of infection when bacterial infection load is low. S. Typhimurium invasion and replication specific proteomic signatures in epithelial cells revealed interdependent host/pathogen specific responses besides pointing to putative novel infection markers and signalling responses, including regulated host proteins associated with Salmonella-modified membranes.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.