{"title":"An epidemic dynamics model with limited isolation capacity.","authors":"Ishfaq Ahmad, Hiromi Seno","doi":"10.1007/s12064-023-00399-9","DOIUrl":null,"url":null,"abstract":"<p><p>We consider a modified SIR model with a four-dimensional system of ordinary differential equations to consider the influence of a limited isolation capacity on the final epidemic size defined as the total number of individuals who experienced the disease at the end of an epidemic season. We derive the necessary and sufficient condition that the isolation reaches the capacity in a finite time on the way of the epidemic process, and show that the final epidemic size is monotonically decreasing in terms of the isolation capacity. We find further that the final epidemic size could have a discontinuous change at the critical value of isolation capacity below which the isolation reaches the capacity in a finite time. Our results imply that the breakdown of isolation with a limited capacity would cause a drastic increase of the epidemic size. Insufficient capacity of the isolation could lead to an unexpectedly severe epidemic situation, while such a severity would be avoidable with the sufficient isolation capacity.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12064-023-00399-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a modified SIR model with a four-dimensional system of ordinary differential equations to consider the influence of a limited isolation capacity on the final epidemic size defined as the total number of individuals who experienced the disease at the end of an epidemic season. We derive the necessary and sufficient condition that the isolation reaches the capacity in a finite time on the way of the epidemic process, and show that the final epidemic size is monotonically decreasing in terms of the isolation capacity. We find further that the final epidemic size could have a discontinuous change at the critical value of isolation capacity below which the isolation reaches the capacity in a finite time. Our results imply that the breakdown of isolation with a limited capacity would cause a drastic increase of the epidemic size. Insufficient capacity of the isolation could lead to an unexpectedly severe epidemic situation, while such a severity would be avoidable with the sufficient isolation capacity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.