Observation of CO2++ dication in the dayside Martian upper atmosphere

IF 2.9 3区 地球科学
Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei
{"title":"Observation of CO2++ dication in the dayside Martian upper atmosphere","authors":"Hao Gu,&nbsp;Jun Cui,&nbsp;DanDan Niu,&nbsp;LongKang Dai,&nbsp;JianPing Huang,&nbsp;XiaoShu Wu,&nbsp;YongQiang Hao,&nbsp;Yong Wei","doi":"10.26464/epp2020036","DOIUrl":null,"url":null,"abstract":"<p>Doubly charged positive ions (dications) are an important component of planetary ionospheres because of the large energy required for their formation. Observations of these ions are exceptionally difficult due to their low abundances; until now, only atomic dications have been detected. The Neutral Gas and Ion Mass Spectrometer (NGIMS) measurements made on board the recent Mars Atmosphere and Volatile Evolution mission provide the first opportunity for decisive detection of molecular dications, CO<sub>2</sub>\n <sup>++</sup> in this case, in a planetary upper atmosphere. The NGIMS data reveal a dayside averaged CO<sub>2</sub>\n <sup>++</sup> distribution declining steadily from 5.6 cm<sup>−3</sup> at 160 km to below 1 cm<sup>−3</sup> above 200 km. The dominant CO<sub>2</sub>\n <sup>++</sup> production mechanisms are double photoionization of CO<sub>2</sub> below 190 km and single photoionization of CO<sub>2</sub>\n <sup>+</sup> at higher altitudes; CO<sub>2</sub>\n <sup>++</sup> destruction is dominated by natural dissociation, but reactions with atmospheric CO<sub>2</sub> and O become important below 160 km. Simplified photochemical model calculations are carried out and reasonably reproduce the data at low altitudes within a factor of 2 but underestimate the data at high altitudes by a factor of 4. Finally, we report a much stronger solar control of the CO<sub>2</sub>\n <sup>++</sup> density than of the CO<sub>2</sub>\n <sup>+</sup> density .</p>","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":"4 4","pages":"396-402"},"PeriodicalIF":2.9000,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.26464/epp2020036","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Doubly charged positive ions (dications) are an important component of planetary ionospheres because of the large energy required for their formation. Observations of these ions are exceptionally difficult due to their low abundances; until now, only atomic dications have been detected. The Neutral Gas and Ion Mass Spectrometer (NGIMS) measurements made on board the recent Mars Atmosphere and Volatile Evolution mission provide the first opportunity for decisive detection of molecular dications, CO2 ++ in this case, in a planetary upper atmosphere. The NGIMS data reveal a dayside averaged CO2 ++ distribution declining steadily from 5.6 cm−3 at 160 km to below 1 cm−3 above 200 km. The dominant CO2 ++ production mechanisms are double photoionization of CO2 below 190 km and single photoionization of CO2 + at higher altitudes; CO2 ++ destruction is dominated by natural dissociation, but reactions with atmospheric CO2 and O become important below 160 km. Simplified photochemical model calculations are carried out and reasonably reproduce the data at low altitudes within a factor of 2 but underestimate the data at high altitudes by a factor of 4. Finally, we report a much stronger solar control of the CO2 ++ density than of the CO2 + density .

火星上层大气白天侧CO2++释放的观测
双电荷正离子(指示)是行星电离层的重要组成部分,因为它们的形成需要大量的能量。由于这些离子的丰度很低,对它们的观测异常困难;到目前为止,只检测到原子迹象。最近在火星大气和挥发物演化任务上进行的中性气体和离子质谱仪(NGIMS)测量为在行星高层大气中决定性地检测分子指示提供了第一次机会,在这种情况下是CO2 ++。NGIMS数据显示,日面平均CO2 ++分布从160 km处的5.6 cm−3稳步下降到200 km以上的1 cm−3以下。190km以下CO2的双光离和190km以上CO2 +的单光离是CO2 +的主要产生机制;CO2 ++的破坏主要是自然解离,但与大气CO2和O的反应在160 km以下变得重要。进行了简化的光化学模式计算,合理地再现了低海拔地区2倍的数据,但低估了高海拔地区4倍的数据。最后,我们报告了太阳对CO2 ++密度的控制要比对CO2 +密度的控制强得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Planetary Physics
Earth and Planetary Physics GEOSCIENCES, MULTIDISCIPLINARY-
自引率
17.20%
发文量
174
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信