Embracing off-the-grid samples.

Oscar López, Özgür Yılmaz
{"title":"Embracing off-the-grid samples.","authors":"Oscar López,&nbsp;Özgür Yılmaz","doi":"10.1007/s43670-023-00065-7","DOIUrl":null,"url":null,"abstract":"<p><p>Many empirical studies suggest that samples of continuous-time signals taken at locations randomly deviated from an equispaced grid (i.e., <i>off-the-grid</i>) can benefit signal acquisition, e.g., undersampling and anti-aliasing. However, explicit statements of such advantages and their respective conditions are scarce in the literature. This paper provides some insight on this topic when the sampling positions are known, with grid deviations generated i.i.d. from a variety distributions. By solving a square-root LASSO decoder with an interpolation kernel we demonstrate the capabilities of nonuniform samples for compressive sampling, an effective paradigm for undersampling and anti-aliasing. For functions in the Wiener algebra that admit a discrete <i>s</i>-sparse representation in some transform domain, we show that <math><mrow><mi>O</mi><mo>(</mo><mi>s</mi><mrow><mspace></mspace><mrow><mi>poly</mi><mspace></mspace><mspace></mspace><mi>log</mi></mrow><mspace></mspace></mrow><mi>N</mi><mo>)</mo></mrow></math> random off-the-grid samples are sufficient to recover an accurate <math><mfrac><mi>N</mi><mn>2</mn></mfrac></math>-bandlimited approximation of the signal. For sparse signals (i.e., <math><mrow><mi>s</mi><mo>≪</mo><mi>N</mi></mrow></math>), this sampling complexity is a great reduction in comparison to equispaced sampling where <math><mrow><mi>O</mi><mo>(</mo><mi>N</mi><mo>)</mo></mrow></math> measurements are needed for the same quality of reconstruction (Nyquist-Shannon sampling theorem). We further consider noise attenuation via oversampling (relative to a desired bandwidth), a standard technique with limited theoretical understanding when the sampling positions are non-equispaced. By solving a least squares problem, we show that <math><mrow><mi>O</mi><mo>(</mo><mi>N</mi><mo>log</mo><mi>N</mi><mo>)</mo></mrow></math> i.i.d. randomly deviated samples provide an accurate <math><mfrac><mi>N</mi><mn>2</mn></mfrac></math>-bandlimited approximation of the signal with suppression of the noise energy by a factor <math><mrow><mo>∼</mo><mfrac><mn>1</mn><msqrt><mrow><mo>log</mo><mo>(</mo><mi>N</mi><mo>)</mo></mrow></msqrt></mfrac><mo>.</mo></mrow></math></p>","PeriodicalId":74751,"journal":{"name":"Sampling theory, signal processing, and data analysis","volume":"21 2","pages":"26"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406720/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sampling theory, signal processing, and data analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43670-023-00065-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many empirical studies suggest that samples of continuous-time signals taken at locations randomly deviated from an equispaced grid (i.e., off-the-grid) can benefit signal acquisition, e.g., undersampling and anti-aliasing. However, explicit statements of such advantages and their respective conditions are scarce in the literature. This paper provides some insight on this topic when the sampling positions are known, with grid deviations generated i.i.d. from a variety distributions. By solving a square-root LASSO decoder with an interpolation kernel we demonstrate the capabilities of nonuniform samples for compressive sampling, an effective paradigm for undersampling and anti-aliasing. For functions in the Wiener algebra that admit a discrete s-sparse representation in some transform domain, we show that O(spolylogN) random off-the-grid samples are sufficient to recover an accurate N2-bandlimited approximation of the signal. For sparse signals (i.e., sN), this sampling complexity is a great reduction in comparison to equispaced sampling where O(N) measurements are needed for the same quality of reconstruction (Nyquist-Shannon sampling theorem). We further consider noise attenuation via oversampling (relative to a desired bandwidth), a standard technique with limited theoretical understanding when the sampling positions are non-equispaced. By solving a least squares problem, we show that O(NlogN) i.i.d. randomly deviated samples provide an accurate N2-bandlimited approximation of the signal with suppression of the noise energy by a factor 1log(N).

Abstract Image

Abstract Image

Abstract Image

拥抱脱离网格的样本。
许多实证研究表明,在随机偏离等间距网格的位置(即离网格)采集的连续时间信号样本有利于信号采集,例如欠采样和抗混叠。然而,关于这种优势及其各自条件的明确陈述在文献中很少。当采样位置已知时,本文对这一主题提供了一些见解,网格偏差由各种分布产生。通过求解具有插值内核的平方根LASSO解码器,我们展示了非均匀样本用于压缩采样的能力,这是一种有效的欠采样和抗混叠范例。对于维纳代数中在某些变换域中允许离散s稀疏表示的函数,我们证明了O(spolylogN)随机离网样本足以恢复信号的精确N2带限近似。对于稀疏信号(即s≪N),与等间隔采样相比,这种采样复杂度大大降低,在等间隔采样中,相同质量的重建需要O(N)个测量值(奈奎斯特-香农采样定理)。我们进一步考虑了通过过采样(相对于所需带宽)的噪声衰减,这是一种在采样位置不等距时理论理解有限的标准技术。通过求解最小二乘问题,我们表明O(NlogN)i.i.d.随机偏差样本提供了信号的精确N2带限近似,噪声能量抑制因子为~1log(N)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信