Cell Surface Accumulation of Intracellular Leucine Proline-Enriched Proteoglycan 1 Enhances Odontogenic Potential of Human Dental Pulp Stem Cells.

IF 2.5 3区 医学 Q3 CELL & TISSUE ENGINEERING
Kyung-Jung Kang, Min-Jeong Choi, Tae-Jun Min, Tae Min You, Gyutae Lee, Seon-Yle Ko, Young-Joo Jang
{"title":"Cell Surface Accumulation of Intracellular Leucine Proline-Enriched Proteoglycan 1 Enhances Odontogenic Potential of Human Dental Pulp Stem Cells.","authors":"Kyung-Jung Kang,&nbsp;Min-Jeong Choi,&nbsp;Tae-Jun Min,&nbsp;Tae Min You,&nbsp;Gyutae Lee,&nbsp;Seon-Yle Ko,&nbsp;Young-Joo Jang","doi":"10.1089/scd.2022.0174","DOIUrl":null,"url":null,"abstract":"<p><p>Primary dental pulp cells can be differentiated into odontoblast-like cells, which are responsible for dentin formation and mineralization. Successful differentiation of primary dental pulp cells can be verified using a few markers. However, odontoblast-specific cell surface markers have not been fully studied yet. LEucine PRoline-Enriched Proteoglycan 1 (LEPRE1) is a basement membrane-associated proteoglycan. LEPRE1 protein levels are increased during odontoblastic differentiation of human dental pulp cells (hDPCs). Intracellular and cell surface accumulation of this protein completely disappeared during dentin maturation and mineralization. Cell surface binding of an anti-LEPRE1 monoclonal antibody that could recognize an extracellular region was gradually increased in the odontoblastic stage. Overexpression and knockdown experiments showed that accumulation of intracellular LEPRE1 could lead to inefficient odontoblastic differentiation and that the movement of LEPRE1 from intracellular region to the cell surface was required for odontoblastic differentiation. Indeed, when LEPRE1 already located on the cell surface was blocked by the anti-LEPRE1 monoclonal antibody, odontoblastic differentiation of hDPCs was inhibited. In this study, we looked at other aspects of LEPRE1 function as a cell surface molecule rather than its known intracellular hydroxylase activity. Our results indicate that this protein has potential as a specific cell surface marker in odontoblastic differentiation.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2022.0174","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Primary dental pulp cells can be differentiated into odontoblast-like cells, which are responsible for dentin formation and mineralization. Successful differentiation of primary dental pulp cells can be verified using a few markers. However, odontoblast-specific cell surface markers have not been fully studied yet. LEucine PRoline-Enriched Proteoglycan 1 (LEPRE1) is a basement membrane-associated proteoglycan. LEPRE1 protein levels are increased during odontoblastic differentiation of human dental pulp cells (hDPCs). Intracellular and cell surface accumulation of this protein completely disappeared during dentin maturation and mineralization. Cell surface binding of an anti-LEPRE1 monoclonal antibody that could recognize an extracellular region was gradually increased in the odontoblastic stage. Overexpression and knockdown experiments showed that accumulation of intracellular LEPRE1 could lead to inefficient odontoblastic differentiation and that the movement of LEPRE1 from intracellular region to the cell surface was required for odontoblastic differentiation. Indeed, when LEPRE1 already located on the cell surface was blocked by the anti-LEPRE1 monoclonal antibody, odontoblastic differentiation of hDPCs was inhibited. In this study, we looked at other aspects of LEPRE1 function as a cell surface molecule rather than its known intracellular hydroxylase activity. Our results indicate that this protein has potential as a specific cell surface marker in odontoblastic differentiation.

细胞内富集亮氨酸脯氨酸蛋白多糖1的细胞表面积累增强人牙髓干细胞的成牙潜能。
原代牙髓细胞可分化为成牙细胞样细胞,负责牙本质的形成和矿化。原生牙髓细胞的成功分化可以通过一些标记物进行验证。然而,成牙细胞特异性细胞表面标记物尚未得到充分研究。LEucine - proline - enrichment Proteoglycan 1 (LEPRE1)是一种基底膜相关蛋白多糖。LEPRE1蛋白水平在人牙髓细胞(hDPCs)成牙细胞分化过程中升高。在牙本质成熟和矿化过程中,这种蛋白在细胞内和细胞表面的积累完全消失。能够识别细胞外区域的抗lepre1单克隆抗体的细胞表面结合在成牙细胞阶段逐渐增加。过表达和敲低实验表明,细胞内LEPRE1的积累可能导致成牙细胞分化效率低下,LEPRE1从细胞内区域向细胞表面的移动是成牙细胞分化所必需的。事实上,当已经位于细胞表面的LEPRE1被抗LEPRE1单克隆抗体阻断时,hDPCs的成牙细胞分化受到抑制。在这项研究中,我们研究了LEPRE1作为细胞表面分子功能的其他方面,而不是其已知的细胞内羟化酶活性。我们的研究结果表明,该蛋白有潜力作为成牙细胞分化的特定细胞表面标记物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem cells and development
Stem cells and development 医学-细胞与组织工程
CiteScore
7.80
自引率
2.50%
发文量
69
审稿时长
3 months
期刊介绍: Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings. Stem Cells and Development coverage includes: Embryogenesis and adult counterparts of this process Physical processes linking stem cells, primary cell function, and structural development Hypotheses exploring the relationship between genotype and phenotype Development of vasculature, CNS, and other germ layer development and defects Pluripotentiality of embryonic and somatic stem cells The role of genetic and epigenetic factors in development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信