Mirkka Hiort, Julia Rohayem, Regine Knaf, Sandra Laurentino, Agnethe Berglund, Claus H Gravholt, Jörg Gromoll, Joachim Wistuba
{"title":"Testicular Architecture of Men with 46,XX Testicular Disorders of Sex Development.","authors":"Mirkka Hiort, Julia Rohayem, Regine Knaf, Sandra Laurentino, Agnethe Berglund, Claus H Gravholt, Jörg Gromoll, Joachim Wistuba","doi":"10.1159/000528955","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A subtype of disorders of sex development (DSD) in individuals with a 46,XX karyotype who are phenotypically male is classified as testicular DSD (46,XX TDSD). These individuals develop testes but are infertile due to germ cell loss. However, little is known about their testicular architecture.</p><p><strong>Methods: </strong>We analyzed biopsies of four SRY positive 46,XX TDSD men for testicular architecture, Sertoli (SCs) and Leydig cells (LCs). These were compared with biopsies of men with normal spermatogenesis (NS, n = 4), men with Klinefelter syndrome, 47 XXY (KS, n = 4), and men with AZF deletions (AZF, n = 5). Testicular architecture was evaluated and SCs and LCs were analyzed for specific markers (SC: SOX9, DMRT1; LC: INSL3).</p><p><strong>Results: </strong>A smaller number of tubules, more SOX9-negative but similar proportions of DMRT1-negative SCs were found in 46,XX TDSD compared to NS. The lower number of tubules and severe LC hyperplasia observed in 46,XX TDSD were similar to KS.</p><p><strong>Conclusion: </strong>Testicular architecture and marker expression of SCs and LCs in 46,XX TDSD men display unique patterns, which are discernable from chromosomal aneuploidies. Given the reduced Y-chromosomal gene content in 46,XX TDSD, the supernumerary X chromosome effects may be decisive regarding the damage on testicular composition and endocrine function.</p>","PeriodicalId":49536,"journal":{"name":"Sexual Development","volume":"17 1","pages":"32-42"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sexual Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000528955","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: A subtype of disorders of sex development (DSD) in individuals with a 46,XX karyotype who are phenotypically male is classified as testicular DSD (46,XX TDSD). These individuals develop testes but are infertile due to germ cell loss. However, little is known about their testicular architecture.
Methods: We analyzed biopsies of four SRY positive 46,XX TDSD men for testicular architecture, Sertoli (SCs) and Leydig cells (LCs). These were compared with biopsies of men with normal spermatogenesis (NS, n = 4), men with Klinefelter syndrome, 47 XXY (KS, n = 4), and men with AZF deletions (AZF, n = 5). Testicular architecture was evaluated and SCs and LCs were analyzed for specific markers (SC: SOX9, DMRT1; LC: INSL3).
Results: A smaller number of tubules, more SOX9-negative but similar proportions of DMRT1-negative SCs were found in 46,XX TDSD compared to NS. The lower number of tubules and severe LC hyperplasia observed in 46,XX TDSD were similar to KS.
Conclusion: Testicular architecture and marker expression of SCs and LCs in 46,XX TDSD men display unique patterns, which are discernable from chromosomal aneuploidies. Given the reduced Y-chromosomal gene content in 46,XX TDSD, the supernumerary X chromosome effects may be decisive regarding the damage on testicular composition and endocrine function.
期刊介绍:
Recent discoveries in experimental and clinical research have led to impressive advances in our knowledge of the genetic and environmental mechanisms governing sex determination and differentiation, their evolution as well as the mutations or endocrine and metabolic abnormalities that interfere with normal gonadal development. ‘Sexual Development’ provides a unique forum for this rapidly expanding field. Its broad scope covers all aspects of genetics, molecular biology, embryology, endocrinology, evolution and pathology of sex determination and differentiation in humans and animals. It publishes high-quality original research manuscripts, review articles, short reports, case reports and commentaries. An internationally renowned and multidisciplinary editorial team of three chief editors, ten prominent scientists serving as section editors, and a distinguished panel of editorial board members ensures fast and author-friendly editorial processing and peer reviewing.