Ferah Bulut, Emine Kacar, Batuhan Bilgin, Munevver Gizem Hekim, Muhammed Mirac Keleştemur, Zafer Sahin, Ahmet Ayar, Mete Ozcan
{"title":"Crosstalk between kisspeptin and gonadotropin-inhibitory hormone in the silence of puberty: preclinical evidence from a calcium signaling study.","authors":"Ferah Bulut, Emine Kacar, Batuhan Bilgin, Munevver Gizem Hekim, Muhammed Mirac Keleştemur, Zafer Sahin, Ahmet Ayar, Mete Ozcan","doi":"10.1080/10799893.2022.2125014","DOIUrl":null,"url":null,"abstract":"<p><p>Kisspeptin and gonadotropin-inhibitory hormone (GnIH) are among suggested neuroendocrine modulators of reproductive function. Intracellular calcium signaling is a critical component in the regulation of a variety of physiological and pathological processes including neurotransmitter release, and, therefore, can be used as signaling indicator for investigating the involvement of kisspeptin, GnIH, and gonadotropin-releasing hormone (GnRH) release. Hence, this study investigated the effects of kisspeptin and GnIH on calcium signaling using immortalized hypothalamic cells (rHypoE-8) as a model. Kisspeptin neurons were loaded with the ratiometric calcium dye (Fura-2 AM, 1 μmol) and intracellular free calcium ([Ca<sup>2+</sup>]<sub>i</sub>) responses were quantified using digital fluorescence imaging system. Kisspeptin-10 (100, 300, and 1000 nM) caused a significant increase in [Ca<sup>2+</sup>]<sub>i</sub> in rHypoE-8 cells (<i>n</i> = 58, <i>n</i> = 64, and <i>n</i> = 49, respectively, <i>p</i> < 0.001). The kisspeptin receptor antagonist, P234, inhibited the calcium responses to kisspeptin (<i>p</i> < 0.001, <i>n</i> = 32). GnIH (100 and 1000 nM), alone, did not cause any significant change in the mean basal [Ca<sup>2+</sup>]<sub>i</sub> levels in kisspeptin cells, but GnIH attenuated the kisspeptin-evoked [Ca<sup>2+</sup>]<sub>i</sub> transients (<i>n</i> = 47, <i>p</i> < 0.001). This novel findings of [Ca<sup>2+</sup>]<sub>i</sub> signaling in <i>in vitro</i> setting implicate that kisspeptin and GnIH may exert their effects on hypothalamus-pituitary-gonadal (HPG) axis by modulating kisspeptin neurons. These results also implicate that kisspeptin neurons may have an autocrine regulation.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":"42 6","pages":"608-613"},"PeriodicalIF":2.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Receptors and Signal Transduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10799893.2022.2125014","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Kisspeptin and gonadotropin-inhibitory hormone (GnIH) are among suggested neuroendocrine modulators of reproductive function. Intracellular calcium signaling is a critical component in the regulation of a variety of physiological and pathological processes including neurotransmitter release, and, therefore, can be used as signaling indicator for investigating the involvement of kisspeptin, GnIH, and gonadotropin-releasing hormone (GnRH) release. Hence, this study investigated the effects of kisspeptin and GnIH on calcium signaling using immortalized hypothalamic cells (rHypoE-8) as a model. Kisspeptin neurons were loaded with the ratiometric calcium dye (Fura-2 AM, 1 μmol) and intracellular free calcium ([Ca2+]i) responses were quantified using digital fluorescence imaging system. Kisspeptin-10 (100, 300, and 1000 nM) caused a significant increase in [Ca2+]i in rHypoE-8 cells (n = 58, n = 64, and n = 49, respectively, p < 0.001). The kisspeptin receptor antagonist, P234, inhibited the calcium responses to kisspeptin (p < 0.001, n = 32). GnIH (100 and 1000 nM), alone, did not cause any significant change in the mean basal [Ca2+]i levels in kisspeptin cells, but GnIH attenuated the kisspeptin-evoked [Ca2+]i transients (n = 47, p < 0.001). This novel findings of [Ca2+]i signaling in in vitro setting implicate that kisspeptin and GnIH may exert their effects on hypothalamus-pituitary-gonadal (HPG) axis by modulating kisspeptin neurons. These results also implicate that kisspeptin neurons may have an autocrine regulation.
Kisspeptin和促性腺激素抑制激素(GnIH)被认为是生殖功能的神经内分泌调节剂。细胞内钙信号是调节包括神经递质释放在内的多种生理和病理过程的关键组成部分,因此可以作为研究kisspeptin、GnIH和促性腺激素释放激素(GnRH)释放参与的信号转导指标。因此,本研究以永生化下丘脑细胞(rHypoE-8)为模型,研究kisspeptin和GnIH对钙信号传导的影响。将Kisspeptin神经元加载比例钙染料(Fura-2 AM, 1 μmol),用数字荧光成像系统定量细胞内游离钙([Ca2+]i)的响应。Kisspeptin-10(100,300和1000 nM)引起rHypoE-8细胞[Ca2+]i显著升高(n = 58, n = 64和n = 49, p p n = 32)。单独GnIH (100 nM和1000 nM)未引起kisspeptin细胞平均基础[Ca2+]i水平的显著变化,但GnIH减弱了kisspeptin诱发的[Ca2+]i瞬变(n = 47, p 2+]i信号),提示kisspeptin和GnIH可能通过调节kisspeptin神经元对下丘脑-垂体-性腺(HPG)轴起作用。这些结果也暗示kisspeptin神经元可能具有自分泌调节作用。
期刊介绍:
Journal of Receptors and Signal Tranduction is included in the following abstracting and indexing services:
BIOBASE; Biochemistry and Biophysics Citation Index; Biological Abstracts; BIOSIS Full Coverage Shared; BIOSIS Previews; Biotechnology Abstracts; Current Contents/Life Sciences; Derwent Chimera; Derwent Drug File; EMBASE; EMBIOLOGY; Journal Citation Reports/ Science Edition; PubMed/MedLine; Science Citation Index; SciSearch; SCOPUS; SIIC.