Yiwei Liu, Changhuo Yang, Hong-Dong Li, Jianxin Wang
{"title":"IsoFrog: a reversible jump Markov Chain Monte Carlo feature selection-based method for predicting isoform functions.","authors":"Yiwei Liu, Changhuo Yang, Hong-Dong Li, Jianxin Wang","doi":"10.1093/bioinformatics/btad530","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>A single gene may yield several isoforms with different functions through alternative splicing. Continuous efforts are devoted to developing machine-learning methods to predict isoform functions. However, existing methods do not consider the relevance of each feature to specific functions and ignore the noise caused by the irrelevant features. In this case, we hypothesize that constructing a feature selection framework to extract the function-relevant features might help improve the model accuracy in isoform function prediction.</p><p><strong>Results: </strong>In this article, we present a feature selection-based approach named IsoFrog to predict isoform functions. First, IsoFrog adopts a reversible jump Markov Chain Monte Carlo (RJMCMC)-based feature selection framework to assess the feature importance to gene functions. Second, a sequential feature selection procedure is applied to select a subset of function-relevant features. This strategy screens the relevant features for the specific function while eliminating irrelevant ones, improving the effectiveness of the input features. Then, the selected features are input into our proposed method modified domain-invariant partial least squares, which prioritizes the most likely positive isoform for each positive MIG and utilizes diPLS for isoform function prediction. Tested on three datasets, our method achieves superior performance over six state-of-the-art methods, and the RJMCMC-based feature selection framework outperforms three classic feature selection methods. We expect this proposed methodology will promote the identification of isoform functions and further inspire the development of new methods.</p><p><strong>Availability and implementation: </strong>IsoFrog is freely available at https://github.com/genemine/IsoFrog.</p>","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":"39 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491952/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad530","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: A single gene may yield several isoforms with different functions through alternative splicing. Continuous efforts are devoted to developing machine-learning methods to predict isoform functions. However, existing methods do not consider the relevance of each feature to specific functions and ignore the noise caused by the irrelevant features. In this case, we hypothesize that constructing a feature selection framework to extract the function-relevant features might help improve the model accuracy in isoform function prediction.
Results: In this article, we present a feature selection-based approach named IsoFrog to predict isoform functions. First, IsoFrog adopts a reversible jump Markov Chain Monte Carlo (RJMCMC)-based feature selection framework to assess the feature importance to gene functions. Second, a sequential feature selection procedure is applied to select a subset of function-relevant features. This strategy screens the relevant features for the specific function while eliminating irrelevant ones, improving the effectiveness of the input features. Then, the selected features are input into our proposed method modified domain-invariant partial least squares, which prioritizes the most likely positive isoform for each positive MIG and utilizes diPLS for isoform function prediction. Tested on three datasets, our method achieves superior performance over six state-of-the-art methods, and the RJMCMC-based feature selection framework outperforms three classic feature selection methods. We expect this proposed methodology will promote the identification of isoform functions and further inspire the development of new methods.
Availability and implementation: IsoFrog is freely available at https://github.com/genemine/IsoFrog.
期刊介绍:
The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.